With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2...With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.展开更多
Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubric...Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubricant layer,showing poor durability.Herein,inspired by the high-strength structure of Shell nacre’s“brick-mud”layer,we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder(AP)as mud.Then,a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology.Subsequently,the textured surface was modified by a silane coupling agent.Vinyl-terminated polydimethylsiloxane(PDMS)was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface(LGTS).The prepared LGTS showed good lubrication properties for multiple phases,including various liquids,ice crystals,and solids.It exhibits excellent chemical stability and mechanical durability under deionized water impact,centrifugal test,strong acid solutions,anti/de-icing cycles,and high-intensity friction.Thus,the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling,anti/de-icing,and lubricating protection.展开更多
文摘With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.
基金supported by the National Natural Science Foundation of China(No.52205313)Natural Science Foundation of Shandong Province(ZR2022QE161),China Postdoctoral Science Foundation(2023M734093)+1 种基金the Tribology Science Fund of State Key Laboratory of Solid Lubrication(LSL-2312)Scientific Innovation Project for Young Scientists in Shandong Provincial Universities(2023KJ145,2023KJ148).
文摘Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubricant layer,showing poor durability.Herein,inspired by the high-strength structure of Shell nacre’s“brick-mud”layer,we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder(AP)as mud.Then,a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology.Subsequently,the textured surface was modified by a silane coupling agent.Vinyl-terminated polydimethylsiloxane(PDMS)was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface(LGTS).The prepared LGTS showed good lubrication properties for multiple phases,including various liquids,ice crystals,and solids.It exhibits excellent chemical stability and mechanical durability under deionized water impact,centrifugal test,strong acid solutions,anti/de-icing cycles,and high-intensity friction.Thus,the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling,anti/de-icing,and lubricating protection.