期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of fluid-thermal-structural coupling characteristics of stratospheric non-rigid airship
1
作者 Huafei DU Mingyun LYU +3 位作者 Chuan YU Yifei wu yongmei wu Kangwen SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期224-236,共13页
The voluminous stratospheric non-rigid airship is very sensitive to the external thermal environment.The temperature change of internal gas caused by the variation in the external ther-mal environment and wind speed w... The voluminous stratospheric non-rigid airship is very sensitive to the external thermal environment.The temperature change of internal gas caused by the variation in the external ther-mal environment and wind speed will lead to a change in the shape and buoyancy of the airship,thereby affecting its flight control.The traditional static analysis method is difficult to accurately reflect this fuid-thermal-structural coupling process.In this paper,the iterative analysis method was established for the fluid-thermal-structural coupling effect of stratospheric non-rigid airship based on the models of fluid,thermal,and structural deformation.Considering the load such as the internal thermal effect and external flow field of the airship,the simulation of the thermo-induced structural deformation effect was conducted using Fluent and Abaqus software.The influ-ence of local time and external wind speed on the structural deformation,volume,and equilibrium altitude of the airship was analyzed.The results demonstrate that,at low wind speed,the influence of aerodynamic pressure on the deformation of the airship is negligible.However,a great amount of heat is carried away by the wind,then the structural deformation caused by internal and external pressure difference is alleviated and the equilibrium altitude of the airship change obviously.This can serve as a guideline for the design and flight test of the long-endurance stratospheric non-rigid airship. 展开更多
关键词 Altitude change Fluid-thermal-structural coupling Stratospheric non-rigid airship Structural deformation Wind speed
原文传递
Hyperinoids A and B,two polycyclic meroterpenoids from Hypericum patulum
2
作者 Xinyu Jia yongmei wu +4 位作者 Chun Lei Yanyan Yu Jianqi Li Jingya Li Aijun Hou 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第5期1263-1266,共4页
Hyperinoids A(1)and B(2),two prenylated acylphloroglucinol related meroterpenoids,were isolated from Hypericum patulum.Compound 1 incorporates an unprecedented 11,12-dioxatetracyclo[5.4.3.01,7.04,14]tetradecane system... Hyperinoids A(1)and B(2),two prenylated acylphloroglucinol related meroterpenoids,were isolated from Hypericum patulum.Compound 1 incorporates an unprecedented 11,12-dioxatetracyclo[5.4.3.01,7.04,14]tetradecane system,while 2 possesses a unique 10,11-dioxatetracyclo[5.3.3.01,7.04,13]tridecane syste m.Their structures were established by spectro scopic analysis and X-ray crystallographic data.Compounds 1 and 2 were identified as potent NF-κB inhibitors and suppressed the LPS-induced inflammatory responses in RAW 246.7 macrophages and primary mouse BMDM cells. 展开更多
关键词 MEROTERPENOIDS Hyperinoids A and B ANTI-INFLAMMATION Hypericum patulum GUTTIFERAE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部