Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)a...Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)and 3R MoS_(2)flakes have shown promising applications in optoelectronics and photocatal-ysis.Here,we present the first flexibleα-In_(2)Se_(3)/3R MoS_(2)vdWs p-n heterojunction devices for photodetection from the visible to near infrared region.These heterojunction devices exhibit an ultrahigh photoresponsivity of 2.9×10^(3)A W^(−1) and a substantial specific detectivity of 6.2×10^(10) Jones under a compressive strain of−0.26%.The photocurrent can be increased by 64%under a tensile strain of+0.35%,due to the heterojunction energy band modulation by piezoelectric polarization charges at the hetero-junction interface.This work demonstrates a feasible approach to enhancement of α-In_(2)Se_(3)/3R MoS_(2) photoelectric response through an appropriate mechanical stimulus.展开更多
Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We s...Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We synthesized MoS2 on carbonized graphene-chitosan(G-C) using the hydrothermal method. The strong interaction between the MoS2 and the G-C greatly improved the electron transport rate and maintained the structural stability of the electrode, which lead to both an excellent rate capability and long cycle stability. The G-C monolith was proven to enhance the electrical conductivity of the composites and served as a matrix for uniformly dispersing active MoS2 nanosheets(NSs), as well as being a buffer material to adapt to changes in volume during the cycle.Serving as an anode material for SIBs, the MoS2-G-C electrode showed good cycling stability(527.3mAh g-1 at100 m A g-1 after 200 cycles), excellent rate capability, and a long cycle life(439.1 m Ah g-1 at 1 A g-1 after 200 cycles).展开更多
Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS2, with a band gap of -2.6...Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS2, with a band gap of -2.6 eV, has an octahedral lattice made of two atomic layers of sulfur and one atomic layer of tin. Till date, there have been limited reports on the growth of large-scale and high quality SnS2 atomic layers and the investigation of their properties as a semiconductor. Here, we report the chemical vapor deposition (CVD) growth of atomic-layer SnS2 with a large crystal size and uniformity. In addition, the number of layers can be changed from a monolayer to few layers and to bulk by changing the growth time. Scanning transmission electron microscopy was used to analyze the atomic structure and demonstrate the 2H stacking poly-type of different layers. The resultant SnS2 crystals is used as a photodetector with external quantum efficiency as high as 150%, suggesting promise for optoelectronic applications.展开更多
The catalysis of Au thin film could be improved by fabrication of array structures in large area.In this work,nanoimprint lithography has been developed tofabricate flexible Au micro-array(MA)electrodes with~100%cover...The catalysis of Au thin film could be improved by fabrication of array structures in large area.In this work,nanoimprint lithography has been developed tofabricate flexible Au micro-array(MA)electrodes with~100%coverage.Advanced electron microscopy characterisations have directly visualised the atomic-scale three-dimensional(3D)nanostructures with a maximum depth of 6 atomic layers.In-situ observation unveils the crystal growth in the form of twinning.High double layer capacitance brings about large number of active sites on the Au thin film and has a logarithmic relationship with mesh grade.Electrochemistry testing shows that the Au MAs perform much better ethanol oxidation reaction than the planar sample;MAs with higher mesh grade have a greater active site utilisation ratio(ASUR),which is important to build electrochemical double layer for efficient charge transfer.Further improvement on ASUR is expected for greater electrocatalytic performance and potential application in direct ethanol fuel cell.展开更多
基金MOE AcRF Tier2(2018-T2-2-005),MOE AcRF Tier1(2018-T1-005-001)A^(*)STAR AME IRG Grant SERC A1983c0027,Singapore.
文摘Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)and 3R MoS_(2)flakes have shown promising applications in optoelectronics and photocatal-ysis.Here,we present the first flexibleα-In_(2)Se_(3)/3R MoS_(2)vdWs p-n heterojunction devices for photodetection from the visible to near infrared region.These heterojunction devices exhibit an ultrahigh photoresponsivity of 2.9×10^(3)A W^(−1) and a substantial specific detectivity of 6.2×10^(10) Jones under a compressive strain of−0.26%.The photocurrent can be increased by 64%under a tensile strain of+0.35%,due to the heterojunction energy band modulation by piezoelectric polarization charges at the hetero-junction interface.This work demonstrates a feasible approach to enhancement of α-In_(2)Se_(3)/3R MoS_(2) photoelectric response through an appropriate mechanical stimulus.
基金financially supported by the Singapore National Research Foundation under NRF RF Award No. MOE2016-T2-1-131, Tier 1 2017-T1-001-075, MOE2018-T3-1-002
文摘Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We synthesized MoS2 on carbonized graphene-chitosan(G-C) using the hydrothermal method. The strong interaction between the MoS2 and the G-C greatly improved the electron transport rate and maintained the structural stability of the electrode, which lead to both an excellent rate capability and long cycle stability. The G-C monolith was proven to enhance the electrical conductivity of the composites and served as a matrix for uniformly dispersing active MoS2 nanosheets(NSs), as well as being a buffer material to adapt to changes in volume during the cycle.Serving as an anode material for SIBs, the MoS2-G-C electrode showed good cycling stability(527.3mAh g-1 at100 m A g-1 after 200 cycles), excellent rate capability, and a long cycle life(439.1 m Ah g-1 at 1 A g-1 after 200 cycles).
文摘Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS2, with a band gap of -2.6 eV, has an octahedral lattice made of two atomic layers of sulfur and one atomic layer of tin. Till date, there have been limited reports on the growth of large-scale and high quality SnS2 atomic layers and the investigation of their properties as a semiconductor. Here, we report the chemical vapor deposition (CVD) growth of atomic-layer SnS2 with a large crystal size and uniformity. In addition, the number of layers can be changed from a monolayer to few layers and to bulk by changing the growth time. Scanning transmission electron microscopy was used to analyze the atomic structure and demonstrate the 2H stacking poly-type of different layers. The resultant SnS2 crystals is used as a photodetector with external quantum efficiency as high as 150%, suggesting promise for optoelectronic applications.
基金the MOE AcRF Tier 1 grant M4011528.The XRD and FEG-TEM characterisations were performed at Facility for Analysis,Characterisation,Testing and Simulation(FACTS)Labthe FEG-SEM/FIB characterisations were carried out at Microelectronics Reliability and Characterisation(MRC)Lab.
文摘The catalysis of Au thin film could be improved by fabrication of array structures in large area.In this work,nanoimprint lithography has been developed tofabricate flexible Au micro-array(MA)electrodes with~100%coverage.Advanced electron microscopy characterisations have directly visualised the atomic-scale three-dimensional(3D)nanostructures with a maximum depth of 6 atomic layers.In-situ observation unveils the crystal growth in the form of twinning.High double layer capacitance brings about large number of active sites on the Au thin film and has a logarithmic relationship with mesh grade.Electrochemistry testing shows that the Au MAs perform much better ethanol oxidation reaction than the planar sample;MAs with higher mesh grade have a greater active site utilisation ratio(ASUR),which is important to build electrochemical double layer for efficient charge transfer.Further improvement on ASUR is expected for greater electrocatalytic performance and potential application in direct ethanol fuel cell.