期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Built-in electric field induced S-scheme g-C_(3)N_(4)homojunction for efficient photocatalytic hydrogen evolution:Interfacial engineering and morphology control
1
作者 yongpan gu Yike Li +2 位作者 Haoqiang Feng Yanan Han Zhongjun Li 《Nano Research》 SCIE EI CSCD 2024年第6期4961-4970,共10页
S-scheme possesses superior redox capabilities compared with the II-scheme,providing an effective method to solve the innate defects of g-C_(3)N_(4)(CN).In this study,S-doped g-C_(3)N_(4)/g-C_(3)N_(4)(SCN-tm/CN)S-sche... S-scheme possesses superior redox capabilities compared with the II-scheme,providing an effective method to solve the innate defects of g-C_(3)N_(4)(CN).In this study,S-doped g-C_(3)N_(4)/g-C_(3)N_(4)(SCN-tm/CN)S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance.In-situ Kelvin probe force microscopy(KPFM)confirms the transport of photo-generated electrons from CN to SCN.Density functional theory(DFT)calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective.Femtosecond transient absorption spectrum(fs-TAS)indicates prolonged lifetimes of SCN-tm/CN_(3)(τ1:9.7,τ2:110,andτ3:1343.5 ps)in comparison to those of CN(τ1:4.86,τ2:55.2,andτ3:927 ps),signifying that the construction of homojunction promotes the separation and transport of electron hole pairs,thus favoring the photocatalytic process.Under visible light irradiation,the optimized SCN-tm/CN_(3)exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3μmol·g^(−1)·h^(−1),which is 20.4 times higher than that of CN(265.7μmol·g^(−1)·h^(−1)).Moreover,the homojunction also displays an apparent quantum efficiency of 26.8%at 435 nm as well as ultra-long and ultra-stable cycle ability.This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion. 展开更多
关键词 HOMOJUNCTION built-in electric field morphology control interfacial engineering carrier separation
原文传递
Engineering BiOBr_(x)I_(1-x)solid solutions with enhanced singlet oxygen production for photocatalytic benzylic C-H bond activation mediated by N-hydroxyl compounds
2
作者 Yucui Bian yongpan gu +2 位作者 Xiaofei Zhang Haijun Chen Zhongjun Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第9期2837-2840,共4页
The aerobic,selective oxidation of hydrocarbons via C-H bond activation is still a challenge.This work shows the achievement of the room temperature visible light driven photocatalytic activation of benzylic C-H bonds... The aerobic,selective oxidation of hydrocarbons via C-H bond activation is still a challenge.This work shows the achievement of the room temperature visible light driven photocatalytic activation of benzylic C-H bonds with N-hydroxysuccinimide over BiOBr_(x)I_(1-x)(0≤x≤1)solid solutions,whose valance bands were engineered through varying the ratio of bromide to iodide.The optimal BiOBr0.85I0.15 catalyst exhibited over 98%conversion ratio of ethylbenzene,which was about 3.9 and 8.9 times that of pure BiOBr and BiOI,respectively.The excellent photocatalytic activity of BiOBr0.85I0.15 solid solution can be ascribed to the orbital hybridization of the valence band containing both Br 4p and I 5p orbitals,which could promote photo-induced charge carrier separation and improve the generation of singlet oxygen.This work shed some light on the rational design of photocatalysts for targeted organic transformation. 展开更多
关键词 BiOBr_(x)I_(1-x)solid solutions Ethylbenzene oxidation N-HYDROXYSUCCINIMIDE PHOTOCATALYSIS Singlet oxygen Province
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部