期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Ultra-homogeneous dense Ag nano layer enables long lifespan solid-state lithium metal batteries
1
作者 Yaning Liu Tianqi Yang +13 位作者 Ruyi Fang Chengwei Lu Ruojian Ma Ke Yue Zhen Xiao Xiaozheng Zhou Wenkui Zhang Xinping He yongping gan Jun Zhang Xinhui Xia Hui Huang Xinyong Tao Yang Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期110-119,共10页
The unstable electrolyte/lithium(Li)anode interface has been one of the key challenges in realizing high energy density solid-state lithium metal batteries(LMBs)applications.Herein,a dense and uniform silver(Ag)nano i... The unstable electrolyte/lithium(Li)anode interface has been one of the key challenges in realizing high energy density solid-state lithium metal batteries(LMBs)applications.Herein,a dense and uniform silver(Ag)nano interlayer with a thickness of∼35 nm is designed accurately by magnetron sputtering technology to optimize the electrolyte/Li anode interface.This Ag nano layer reacts with Li metal anode to in-situ form Li-Ag alloy,thus enhancing the physical interfacial contact,and further improving the interfacial wettability and compatibility.In particular,the Li-Ag alloy is inclined to form AgLi phase proved by cryo-TEM and DFT,effectively preventing SN from continuously“attacking”the Li metal anode due to the lower adsorption of succinonitrile(SN)molecules on AgLi than that of pure Li metal,thereby significantly reinforcing the interfacial stability.Hence,the enhanced physical and chemical stability of electrolyte/Li anode interface promotes the homogeneous deposition of Li^(+)and inhibits the dendrite growth.The Li-symmetric cell maintains stable operation for up to 1700 h and the cycling stability of LiFePO_(4)|SPE|Li full cell is remarkably improved at room temperature(capacity retention rate of 91.9%for 200 cycles).This work opens an effective way for accurate and controllable interface design of long lifespan solid-state LMBs. 展开更多
关键词 Silvernano layer Poly(ethylene oxide) Solid polymer electrolyte SUCCINONITRILE Lithium metal battery
下载PDF
A critical review on composite solid electrolytes for lithium batteries:Design strategies and interface engineering
2
作者 Tianqi Yang Cheng Wang +7 位作者 Wenkui Zhang Yang Xia Hui Huang yongping gan Xinping He Xinhui Xia Xinyong Tao Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期189-209,共21页
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren... The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs. 展开更多
关键词 Inorganic solid electrolytes Polymer solid electrolytes Composite solid electrolytes Interface engineering
下载PDF
Interfaces in Sulfide Solid Electrolyte‑Based All‑Solid‑State Lithium Batteries:Characterization,Mechanism and Strategy
3
作者 Zhan Wu Xiaohan Li +8 位作者 Chao Zheng Zheng Fan Wenkui Zhang Hui Huang yongping gan Yang Xia Xinping He Xinyong Tao Jun Zhang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期573-613,共41页
Owing to the advantages of high energy density and environmental friendliness,lithium-ion batteries(LIBs)have been widely used as power sources in electric vehicles,energy storage systems and other devices.Conventiona... Owing to the advantages of high energy density and environmental friendliness,lithium-ion batteries(LIBs)have been widely used as power sources in electric vehicles,energy storage systems and other devices.Conventional LIBs composed of liquid electrolytes(LEs)have potential safety hazards;thermal runaway easily leads to battery explosion and spontaneous combustion.To realize a large-scale energy storage system with higher safety and higher energy density,replacing LEs with solid-state electrolytes(SSEs)has been pursued.Among the many SSEs,sulfide SSEs are attractive because of their high ionic conductivities,easy processabilities and high thermostabilities.However,interfacial issues(interfacial reactions,chemo-mechanical failure,lithium dendrite formation,etc.)between sulfide SSEs and electrodes are factors limiting widespread application.In addition,the intrinsic interfacial issues of sulfide SSEs(electrochemical windows,diffusion mechanisms of Li^(+),etc.)should not be ignored.In this review,the behaviors,properties and mechanisms of interfaces in all-solid-state lithium batteries with a variety of sulfide SSEs are comprehensively summarized.Additionally,recent research progress on advanced characterization methods and designs used to stabilize interfaces is discussed.Finally,outlooks,challenges and possible interface engineering strategies are analyzed and proposed. 展开更多
关键词 All-solid-state lithium batteries Sulfide solid electrolytes Interface
原文传递
Correction:Interfaces in Sulfide Solid Electrolyte‑Based All‑Solid‑State Lithium Batteries:Characterization,Mechanism and Strategy
4
作者 Zhan Wu Xiaohan Li +8 位作者 Chao Zheng Zheng Fan Wenkui Zhang Hui Huang yongping gan Yang Xia Xinping He Xinyong Tao Jun Zhang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期186-186,共1页
Correction to:Electrochemical Energy Reviews(2023)6:10 https://doi.org/10.1007/s41918-022-00176-0 The publication of this article unfortunately contained mistakes.The conflict of interest of one of the authors was mis... Correction to:Electrochemical Energy Reviews(2023)6:10 https://doi.org/10.1007/s41918-022-00176-0 The publication of this article unfortunately contained mistakes.The conflict of interest of one of the authors was missing. 展开更多
关键词 SOLID CORRECTION ELECTROCHEMICAL
原文传递
Enhanced sulfide chemisorption by conductive AI-doped ZnO decorated carbon nanoflakes for advanced Li-S batteries 被引量:1
5
作者 Yangbo Kong Jianmin Luo +11 位作者 Chengbin Jin Huadong Yuan Ouwei Sheng Liyuan Zhang Cong Fang Wenkui Zhang Hui Huang Yang Xia Chu Liang Jun Zhang yongping gan Xinyong Tao 《Nano Research》 SCIE EI CAS CSCD 2018年第1期477-489,共13页
Lithium-sulfur batteries have attracted significant attention recently due to their high theoretical capacity, energy density and cost effectiveness. However, sulfur cathodes suffer from issues such as shuttle effects... Lithium-sulfur batteries have attracted significant attention recently due to their high theoretical capacity, energy density and cost effectiveness. However, sulfur cathodes suffer from issues such as shuttle effects, uncontrollable deposition of lithium sulfides species, and volume expansion of sulfur, which result in rapid capacity fading and low Coulombic efficiency. In recent years, metal-oxide nanostructures have been widely used in Li-S batteries, owing to their effective inhibition of the shuttle effect and controlled deposition of lithium sulfide. However, the nonconductive metal-oxides used in Li-S batteries suffer from extra diffusion process, which slows down the electrochemical reaction kinetics. Herein, we report the synthesis of carbon nanoflakes decorated with conductive aluminium-doped zinc oxide (AZO@C) nanoparticles, through a facile biotem- plating method using kapok fibers as both the template and carbon source. A sulfur cathode based on the AZO@C nanocomposites shows better electrochemical performance than those of cathodes based on ZnO and A1203 with poor conductivity, with a stable capacity of 927 mAh.g-1 at 0.1C (1C = 1,675 mA.g-1) after 100 cycles. A reversible capacity of 544 mAh.g-1 after 300 cycles was obtained even after increasing the current density to 0.5C, with a 0.039% capacity decay per cycle under a sulfur loading of 3.3 mg-cm-2. Moreover, a capacity of 466 mAh.g-1 after 100 cycles at 0.5C could still be obtained when the sulfur loading was increased to 6.96 mg.cm-2. The excellent electrochemical performance of the AZO@C/S composite can be attributed to its high conductivity of the polar AZO host, which suppresses the shuttle effect while simultaneously improving the redox kinetics in the reciprocal transformation of lithium sulfide species. 展开更多
关键词 lithium-sulfur battery aluminium-doped zincoxide CONDUCTIVE nanostructure BIOTEMPLATE carbon nanoflakes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部