Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethan...Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester.Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics.Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses,the distribution of microchannels in the interface,the spreading characteristics of the fluid in contact interface,as well as the mechanical driving mechanism.Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels,which shows that the feature lengths of the microchannels,the spreading area and the spreading rate of the fluid are inversely proportional to the load.And the flow path of the fluid in the interface is mainly divided into three stages:along the wall of the island,generating liquid bridges,and moving from the tip side to the root side in the wedge-shaped channel.The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid.In addition,the phenomenon of“trapped air”occurs during the flow process due to the irregular characteristics of the microchannel.This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface,the friction and lubrication of the mechanical system,and the sealing mechanism.展开更多
Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method a...Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method and applied for RWGS reaction.At certain reaction temperatures 500-750℃,Ni-HMS samples displayed a higher selectivity to the preferable CO than that of conventionally impregnated Ni/HMS catalyst.This could be originated from the smaller NiO nanoparticles over Ni-HMS catalyst.NiCe-HMS exhibited higher activity compared to Ni-HMS.The catalysts were characterized by means of TEM,XPS,XRD,H_(2)-TPR,CO_(2)-TPD,EPR and N_(2) adsorption-desortion technology.It was found that introduction of Ce created high concentration of oxygen vacancies,served as the active site for activating CO_(2).Also,this work analyzed the effect of the H_(2)/CO_(2)molar ratio on the best NiCe-HMS.When reaction gas H_(2)/CO_(2)molar ratio was 4 significantly decreased the selectivity to CO at low temperature,but triggered a higher CO_(2)conversion which is close to the equilibrium.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52375178,52305188,51975174,51875153,and 51805508)the Natural Science Foundation of Anhui Province(Nos.2308085ME158 and 2308085QE156).
文摘Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester.Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics.Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses,the distribution of microchannels in the interface,the spreading characteristics of the fluid in contact interface,as well as the mechanical driving mechanism.Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels,which shows that the feature lengths of the microchannels,the spreading area and the spreading rate of the fluid are inversely proportional to the load.And the flow path of the fluid in the interface is mainly divided into three stages:along the wall of the island,generating liquid bridges,and moving from the tip side to the root side in the wedge-shaped channel.The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid.In addition,the phenomenon of“trapped air”occurs during the flow process due to the irregular characteristics of the microchannel.This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface,the friction and lubrication of the mechanical system,and the sealing mechanism.
基金the Chengdu University of Technology Teachers Development Research Fund (No. 10912-2019KYQD07266)National Natural Science Foundation of China (No. 21806015) for financial support
文摘Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method and applied for RWGS reaction.At certain reaction temperatures 500-750℃,Ni-HMS samples displayed a higher selectivity to the preferable CO than that of conventionally impregnated Ni/HMS catalyst.This could be originated from the smaller NiO nanoparticles over Ni-HMS catalyst.NiCe-HMS exhibited higher activity compared to Ni-HMS.The catalysts were characterized by means of TEM,XPS,XRD,H_(2)-TPR,CO_(2)-TPD,EPR and N_(2) adsorption-desortion technology.It was found that introduction of Ce created high concentration of oxygen vacancies,served as the active site for activating CO_(2).Also,this work analyzed the effect of the H_(2)/CO_(2)molar ratio on the best NiCe-HMS.When reaction gas H_(2)/CO_(2)molar ratio was 4 significantly decreased the selectivity to CO at low temperature,but triggered a higher CO_(2)conversion which is close to the equilibrium.