As an important component of the heating,ventilating and air conditioning(HVAC)systems,air handling units(AHUs)are responsible for regulating indoor temperature and humidity.In this paper,a multivariable nonlinear dyn...As an important component of the heating,ventilating and air conditioning(HVAC)systems,air handling units(AHUs)are responsible for regulating indoor temperature and humidity.In this paper,a multivariable nonlinear dynamic model of the AHUs with unknown strength of the humidity source is considered,and an improved backstepping controller is proposed to realize the tracking objective of the indoor temperature,relative humidity and carbon dioxide concentration.Firstly,the original system is represented in simplified state space form,and then the state transformation is introduced with a gain to overcome the difficulty caused by the unknown strength of the humidity source.Then,the improved backstepping controller is designed in a step-by-step way.Moreover,the stability of the closed-loop system is analyzed in detail.Finally,we consider the case that the AHUs work in summer of Jinan,China,as an example.The simulation results show the effectiveness of the controller.Meanwhile,the performance of the improved backstepping controller are compared with that of the decoupled sliding mode and PID controllers.展开更多
基金This study is partly supported by the National Natural Science Foundation of China(61903226,62076150,62173216)the Taishan Scholar Project of Shandong Province(TSQN201812092)+1 种基金the Key Research and Development Program of Shandong Province(2021CXGC011205,2019GGX101072)the Youth Innovation Technology Project of Higher School in Shandong Province(2019KJN005).
文摘As an important component of the heating,ventilating and air conditioning(HVAC)systems,air handling units(AHUs)are responsible for regulating indoor temperature and humidity.In this paper,a multivariable nonlinear dynamic model of the AHUs with unknown strength of the humidity source is considered,and an improved backstepping controller is proposed to realize the tracking objective of the indoor temperature,relative humidity and carbon dioxide concentration.Firstly,the original system is represented in simplified state space form,and then the state transformation is introduced with a gain to overcome the difficulty caused by the unknown strength of the humidity source.Then,the improved backstepping controller is designed in a step-by-step way.Moreover,the stability of the closed-loop system is analyzed in detail.Finally,we consider the case that the AHUs work in summer of Jinan,China,as an example.The simulation results show the effectiveness of the controller.Meanwhile,the performance of the improved backstepping controller are compared with that of the decoupled sliding mode and PID controllers.