The production of L-tryptophan through che- mical synthesis, direct fermentation, bioconversion and enzymatic conversion has been reported. However, the role of the transport system for the aromatic amino acids in L- ...The production of L-tryptophan through che- mical synthesis, direct fermentation, bioconversion and enzymatic conversion has been reported. However, the role of the transport system for the aromatic amino acids in L- tryptophan producing strains has not been fully explored. In this study, the atop gene of the L-tryptophan producing Escherichia coli TRTH strain was disrupted using Red recombination technology and an atoP mutant E. coli TRTH AaroP was constructed. Fed-batch fermentation of E. coli TRTH △aroP was carried out in 30-L fermentor to investigate the L-tryptophan production. Compared with E. coli TRTH, the atoP mutant was able to maintain a higher growth rate during the exponential phase of the fermentation and the L-tryptophan production increased by 13.3%.展开更多
文摘The production of L-tryptophan through che- mical synthesis, direct fermentation, bioconversion and enzymatic conversion has been reported. However, the role of the transport system for the aromatic amino acids in L- tryptophan producing strains has not been fully explored. In this study, the atop gene of the L-tryptophan producing Escherichia coli TRTH strain was disrupted using Red recombination technology and an atoP mutant E. coli TRTH AaroP was constructed. Fed-batch fermentation of E. coli TRTH △aroP was carried out in 30-L fermentor to investigate the L-tryptophan production. Compared with E. coli TRTH, the atoP mutant was able to maintain a higher growth rate during the exponential phase of the fermentation and the L-tryptophan production increased by 13.3%.