In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time beh...In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system. Both the timedecay property of the rarefaction wave profile and the influence of the electromagnetic field play a key role in the analysis.展开更多
基金supported by the National Natural Science Foundation of China(11271160)
文摘In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system. Both the timedecay property of the rarefaction wave profile and the influence of the electromagnetic field play a key role in the analysis.