Genotyping arrays based on single nucleotide polymorphisms(SNPs)provide a low-cost,highthroughput platform.The development of a SNP array that fully reflects the genetic diversity of maize(Zea mays L.)germplasm and is...Genotyping arrays based on single nucleotide polymorphisms(SNPs)provide a low-cost,highthroughput platform.The development of a SNP array that fully reflects the genetic diversity of maize(Zea mays L.)germplasm and is applicable to molecular breeding programs is desirable.In this study,we developed a MaizeGerm50K array comprising 50,852 SNPs selected from the resequencing data of 1604 maize inbred lines and other markers.A genome-wide association study using a landrace panel genotyped with the array permitted mapping of several known genes.We also verified a candidate gene,RNA-binding motif protein 24-like 1(ZmRBM24L1),delaying flowering through overexpression lines.Genomic selection for yield and agronomic traits showed high prediction accuracy.The MaizeGerm50K array is thus a valuable genomic tool for maize genetic studies and breeding.展开更多
Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombin...Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombinant adenovirus vector containing human HO-1 gene(Ad-HO-1 ) or enhanced green fluorescent protein gene(Ad-EGFP) was generated by using AdEasy system respectively. The rat islets were transfected with Ad-HO-1, Ad-EGFP or blank vector and then cultured for 7 days. Transfection was confirmed by expression of EGFP and human HO-1 protein detected by fluorescence photographs and western blot, respectively. The insulin release upon different concentration of glucose stimulation was detected using insulin radioimmunoassay kit, and stimulation index(SI) was calculated. Glucose-stimulated insulin release was used 'to assess islet viability. Results:Adenovirus vector successfully transferred HO-1 gene to rat islet cells in vitro, and the insulin release upon high level of glucose stimulation and stimulation index (SI) of Ad-HO-1-infected islets were significantly higher than those of Ad-EGFP-infected islets and control islets (P 〈 0.05). Conclusion: Adenovirus-mediated HO-1 gene transfection is a feasible strategy to confer cytoprotection and therefore protect the viability of cultured rat islets.展开更多
The Quantougou(QTG) Fauna in central Lanzhou Basin is an important late Mid-Miocene fauna on the northeastern Tibetan Plateau margin,but its numerical age remains a matter of debate.Here,we present a new magnetostrati...The Quantougou(QTG) Fauna in central Lanzhou Basin is an important late Mid-Miocene fauna on the northeastern Tibetan Plateau margin,but its numerical age remains a matter of debate.Here,we present a new magnetostratigraphic record for a fluvio-lacustrine section to further constrain the age of the QTG Fauna.Results suggest that the studied section spans from polarity chrons C5Cn.2n to C5 n.2n or C5 An.1n,with ages of ca.16.5 Ma to 10 Ma or 16.5 Ma to 12 Ma.The QTG Fauna is located at the top of polarity chron C5r.3 r or C5 Ar.2 r,which corresponds to an age of 11.7 Ma or 12.8 Ma for the fauna.Accordingly,the associated Myocricetodontinae(a subfamily of Gerbillidae,Rodentia) is suggested to have appeared in the Lanzhou Basin at 11.7 Ma or 12.8 Ma,which is the oldest Myocricetodontinae in East Asia but is still much younger than the ~20 Ma appearance of this subfamily in West and South Asia.Our age data support the interpretation that East Asian Myocricetodontinae originated from South Asia.The QTG fauna further suggest a dry and open grassland environment,which is consistent with global cooling after the Mid-Miocene Climatic Optimum.展开更多
Objective: The purpose of the study was to study the effect of Huaier, a traditional Chinese medicine, on the cell cycle adjustment in MOLT4 cells in vitro. Methods: We used MTT assay to test cell viability, flow cyto...Objective: The purpose of the study was to study the effect of Huaier, a traditional Chinese medicine, on the cell cycle adjustment in MOLT4 cells in vitro. Methods: We used MTT assay to test cell viability, flow cytometry to detect cell cycle and apoptosis and western blot to examine the expression of cell-cycle and apoptotic proteins in MOLT4 cells induced by Huaier. Results: Huaier could reduce the viability of MOLT4 cell by inducing G1 arrest and apoptosis. The induction of apoptosis after treatment with Huaier for 24 h was demonstrated in a dose- and time-dependent manner by flow cytometry analysis. G1 arrest induced by Huaier was modulated through the increased expression of Cdki proteins(p21cip/waf1 and p27kip1) with a simultaneous decrease in Cdk2, Cdk4, Cdk6, cyclin D1 and cyclin E expression. Huaier also induced Bax and Bcl-2 expression and activation of Caspase-3. Conclusion: It is firstly demonstrated that Huaier can inhibit proliferation of MOLT4 cells via G1 arrest and apoptosis. These results suggest that Huaier is a cell-cycle anti-cancer drug.展开更多
The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have stud...The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have studied the boundary value problems of the complete third-order differential equations u′′′(t) = f (t,u(t),u′(t),u′′(t)). In this paper, we discuss the existence and uniqueness of solutions and positive solutions of the fully third-order ordinary differential equation on [0,1] with the boundary condition u(0) = u′(1) = u′′(1) = 0. Under some inequality conditions on nonlinearity f some new existence and uniqueness results of solutions and positive solutions are obtained.展开更多
Permittivity at microwave frequencies determines the practical applications of microwave dielectric ceramics.The accuracy and universality of the permittivity prediction by Clausius–Mossotti equation depends on the d...Permittivity at microwave frequencies determines the practical applications of microwave dielectric ceramics.The accuracy and universality of the permittivity prediction by Clausius–Mossotti equation depends on the dielectric polarizability(αD)database.The most influentialαD database put forward by Shannon is facing three challenges in the 5 G era:(1)Few data,(2)Simplistic relation and(3)Low frequency(kHz–MHz)oriented.Here,we optimized and extended the Shannon’s database for microwave frequencies by the four-stage multiple linear regression and support vector machine model.In comparison with the conventional database,the optimized and extended databases achieved higher accuracy and expanded the amount of data from 60 to more than 900.Besides,we analyzed the relationships betweenαD and ion characteristics,including ionic radius(IR),atomic number(N),valence state(V)and coordination number(CN).We found that the positive cubic law of“αD~IR3”discussed in Shannon’s work was valid for the IR changed by the N,but invalid for the change caused by the CN.展开更多
Virtual simulation technology has become one of the most popular technologies in the field of engineering education after the multimedia information technology in recent years.This paper,based on the comprehensive int...Virtual simulation technology has become one of the most popular technologies in the field of engineering education after the multimedia information technology in recent years.This paper,based on the comprehensive integrated simulation and verification module of UG NX software,describes and discusses a novel virtual simulation system teaching(VSST)for numerically controlled machining to support the student engineering training to achieve the theoretical knowledge and practical techniques in numerically controlled machining.The findings of a study designed to evaluate the impact of VSST for the development of numerically controlled machining course are presented here.In addition,analysis of the follow-up surveys indicates that the VSST method enables to provide the concrete experience of interaction between the students and the simulation environment and to further stimulate students’interest in learning,so that the students who used VSST achieve significantly higher results than their co-workers.展开更多
Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response ...Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response refers to a variety of extensional,contractional,or shear modes of crystals,and also relies on boundary conditions from morphology design.However,to pursue fundamental torsion actuation in an integrated piezoceramic component is still a long-term tough task due to nil twist mode limited by microscopic crystal mirror symmetry.Herein,we demonstrate a design of cofired monolithic actuators to originally overcome this obstacle.The prototype device is composed of two sets of stacked actuation subunits that work on artificially reverse face shear modes,and their chiral stiffness couplings will synergistically contribute to synthetic twist outputs at a broad bandwidth.Finite element simulation reveals twist displacements are highly tunable by manipulating the geometrical dimensions.Transverse deflection measurements manifest the stable and sizeable linear actuation response to applied electric fields(around 3.7μm under 40 V at 1 Hz).Importantly,the design actually introduces a more general route to enable arbitrary modes and actuation states in integrated piezoceramic components.展开更多
A deeper understanding of hyperthermal events in the Earth’s history can provide an important scientific basis for understanding and coping with global warming in the Anthropocene. Two types of hyperthermal events ar...A deeper understanding of hyperthermal events in the Earth’s history can provide an important scientific basis for understanding and coping with global warming in the Anthropocene. Two types of hyperthermal events are classified based on the characteristics of the carbon isotope excursion(CIE) of the five representative hyperthermal events in the Mesozoic and Cenozoic. The first type is overall characterized by negative CIEs(NCHE) and represented by the Permian-Triassic boundary event(PTB, ~252 Ma), the early Toarcian oceanic anoxic event(TOAE, ~183 Ma), and the Paleocene-Eocene Thermal Maximum event(PETM, ~56 Ma). The second type is overall characterized by positive CIEs(PCHE) and represented by the early Aptian oceanic anoxic event(OAE1 a, ~120 Ma) and the latest Cenomanian oceanic anoxic event(OAE2, ~94 Ma).Hyperthermal events of negative CIEs(NCHE), lead to dramatic changes in temperature, sedimentation, and biodiversity. These events caused frequent occurrence of terrestrial wildfires, extreme droughts, acid rain, destruction of ozone layer, metal poisoning(such as mercury), changes in terrestrial water system, and carbonate platform demise, ocean acidification, ocean anoxia in marine settings, and various degree extinction of terrestrial and marine life, especially in shallow marine. In contrast,hyperthermal events of positive CIEs(PCHE), result in rapid warming of seawater and widespread oceanic anoxia, large-scale burial of organic matter and associated black shale deposition, which exerted more significant impacts on deep-water marine life,but little impacts on shallow sea and terrestrial life. While PCHEs were triggered by volcanism associated with LIPs in deep-sea environment, the released heat and nutrient were buffered by seawater due to their eruption in the deep sea, thus exerted more significant impacts on deep-marine biota than on shallow marine and terrestrial biota. This work enriches the study of hyperthermal events in geological history, not only for the understanding of hyperthermal events themselves, large igneous provinces, marine and terrestrial environment changes, mass extinctions, but also for providing a new method to identify the types of hyperthermal events and the inference of their driving mechanism based on the characteristics of carbon isotopic excursions and geological records.展开更多
Two-dimensional(2D)metal oxides and chalcogenides(MOs&MCs)have been regarded as a new class of promising electro-and photocatalysts for many important chemical reactions such as hydrogen evolution reaction,CO_(2) ...Two-dimensional(2D)metal oxides and chalcogenides(MOs&MCs)have been regarded as a new class of promising electro-and photocatalysts for many important chemical reactions such as hydrogen evolution reaction,CO_(2) reduction reaction and N2 reduction reaction in virtue of their outstanding physicochemical properties.However,pristine 2D MOs&MCs generally show the relatively poor catalytic performances due to the low electrical conductivity,few active sites and fast charge recombination.Therefore,considerable efforts have been devoted to engineering 2D MOs&MCs by rational structural design and chemical modification to further improve the catalytic activities.Herein,we comprehensively review the recent advances for engineering technologies of 2D MOs&MCs,which are mainly focused on the intercalation,doping,defects creation,facet design and compositing with functional materials.Meanwhile,the relationship between morphological,physicochemical,electronic,and optical properties of 2D MOs&MCs and their electro-and photocatalytic performances is also systematically discussed.Finally,we further give the prospect and challenge of the field and possible future research directions,aiming to inspire more research for achieving high-performance 2D MOs&MCs catalysts in energy storage and conversion fields.展开更多
Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a disto...Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.展开更多
Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of pract...Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of practical use for permittivity prediction,unsatisfactory predictability and universality impede rational design of new high-performance materials.In this work,based on a dataset of 254 single-phase microwave dielectric ceramics(MWDCs),machine learning(ML)methods established a high accuracy model for permittivity prediction and gave insights of quantitative chemistry/structureproperty relationships.We employed five commonly-used algorithms,and introduced 32 intrinsic chemical,structural and thermodynamic features which have correlations with permittivity for modeling.Machine learning results help identify the permittivity decisive factors,including polarizability per unit volume,average bond length,and average cell volume per atom.The feature-property relationships were discussed.The optimal model constructed by support vector regression with radial basis function kernel was validated its superior predictability and generalization by verification dataset.Low permittivity material systems were screened from a dataset of~3300 materials without reported microwave permittivity by high-throughput prediction using optimal model.Several predicted low permittivity ceramics were synthesized,and the experimental results agree well with ML prediction,which confirmed the reliability of the prediction model.展开更多
Dear Editor,Signal transduction takes the responsibility of translating extracellular information into specific cellular activities,enabling cells,including cancer cells,to respond exquisitely to extracellular guidanc...Dear Editor,Signal transduction takes the responsibility of translating extracellular information into specific cellular activities,enabling cells,including cancer cells,to respond exquisitely to extracellular guidance cues.N6-methyladenosine(m^(6)A),the most pervasive and abundant modification within eukaryotic mRNAs,is known to have specific effects on cellular activities relevant to cancer.1 Despite the fact that m^(6)A methylation is a dynamic event involving a series of enzymes,it remains unknown whether signal transduction,much less extracellular signaling molecules,uses m^(6)A methylation as an effector mechanism in cancer.展开更多
Surface modification of barium titanate particles has been carried out using a wet chemical method.The microstructural and dielectric properties of the ceramics made from surface modified particles were extensively in...Surface modification of barium titanate particles has been carried out using a wet chemical method.The microstructural and dielectric properties of the ceramics made from surface modified particles were extensively investigated by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and dielectric properties measurements.The breakdown strength increased by 69%and 117%for the Al_(2)O_(3) and B_(2)O_(3)–SiO_(2) modified ceramics,respectively.An energy storage density of up to 3.2 J/cm^(3) has been obtained.The suppression of grain boundary electron transport and reduction in pore defects lead to the energy storage properties enhancement of the modified ceramics.These results indicated that surface modification of ceramic particles is a promising approach to obtain dielectric ceramics with high energy storage density.展开更多
Morphotropic phase boundary(MPB)containing piezoelectric systems generally exhibit enhanced piezoelectric performance at compositions within,or close to,the MPB region.The mechanism/s underlying such enhancement,howev...Morphotropic phase boundary(MPB)containing piezoelectric systems generally exhibit enhanced piezoelectric performance at compositions within,or close to,the MPB region.The mechanism/s underlying such enhancement,however,are still contentious due to complex micro/nanostructure and apparently inherent local structural variability associated with octahedral tilt disorder/platelet precipitates in such piezoelectric materials.This paper reviews some recent structural analysis results from Bi_(0.5)Na_(0.5)TiO_(3)(BNT)and other binary,lead-free,piezoelectric materials systems derived from it via electron diffraction and in situ neutron diffraction.The results suggest that intrinsically existing local microstructure(LMS)in BNT essentially continues across the MPB region.The LMS,originating from inherent octahedral tilt disorder,is strongly temperature-,electric field-,pressure-and chemical composition-dependent,and may help to explain a series of phenomena observed in BNT-based binary materials systems,including the enhanced piezoelectric effect in the region of the MPB.展开更多
Local electric-field around multitype pores(dielectric pore,interface pore,electrode pore)in multilayer ceramic capacitors(MLCCs)was investigated using Kelvin probe force microscopy combined with the finite element si...Local electric-field around multitype pores(dielectric pore,interface pore,electrode pore)in multilayer ceramic capacitors(MLCCs)was investigated using Kelvin probe force microscopy combined with the finite element simulation to understand the effect of pores on the electric reliability of MLCCs.Electricfield is found to be concentrated significantly in the vicinity of these pores and the strength of the local electric-field is 1.5e5.0 times of the nominal strength.Unexpectedly,the concentration degree of the pores in the inner electrode is much higher than that in the dielectrics and dielectric-electrode interfaces.Meanwhile,geometry orientations are found to have a remarkable influence on the local electric field strength.The pores act as an insulation degradation precursor via local electric,thermal center,and oxygen vacancies accumulation center.Such unusual local electric field concentration of multitype pores can provide new insights into the understanding of insulation degradation evolution,processing tailoring and design optimization for MLCCs.展开更多
基金supported by grants from Scientific Innovation 2030 Project (C.W,2022ZD0401703)National Key Research and Development Program of China (2021YFD1200700)+2 种基金National Natural Science Foundation of China (32372082)China Agriculture Research System (CARS-02-03)Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Genotyping arrays based on single nucleotide polymorphisms(SNPs)provide a low-cost,highthroughput platform.The development of a SNP array that fully reflects the genetic diversity of maize(Zea mays L.)germplasm and is applicable to molecular breeding programs is desirable.In this study,we developed a MaizeGerm50K array comprising 50,852 SNPs selected from the resequencing data of 1604 maize inbred lines and other markers.A genome-wide association study using a landrace panel genotyped with the array permitted mapping of several known genes.We also verified a candidate gene,RNA-binding motif protein 24-like 1(ZmRBM24L1),delaying flowering through overexpression lines.Genomic selection for yield and agronomic traits showed high prediction accuracy.The MaizeGerm50K array is thus a valuable genomic tool for maize genetic studies and breeding.
基金This work was supported by National Natural Science Foundation of China, No 30571759
文摘Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombinant adenovirus vector containing human HO-1 gene(Ad-HO-1 ) or enhanced green fluorescent protein gene(Ad-EGFP) was generated by using AdEasy system respectively. The rat islets were transfected with Ad-HO-1, Ad-EGFP or blank vector and then cultured for 7 days. Transfection was confirmed by expression of EGFP and human HO-1 protein detected by fluorescence photographs and western blot, respectively. The insulin release upon different concentration of glucose stimulation was detected using insulin radioimmunoassay kit, and stimulation index(SI) was calculated. Glucose-stimulated insulin release was used 'to assess islet viability. Results:Adenovirus vector successfully transferred HO-1 gene to rat islet cells in vitro, and the insulin release upon high level of glucose stimulation and stimulation index (SI) of Ad-HO-1-infected islets were significantly higher than those of Ad-EGFP-infected islets and control islets (P 〈 0.05). Conclusion: Adenovirus-mediated HO-1 gene transfection is a feasible strategy to confer cytoprotection and therefore protect the viability of cultured rat islets.
基金This study was supported financially by the National Natural Science Foundation of China(Nos.41704071,41290253)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0707)+2 种基金Chinese Academy of Sciences“Light of West China”Program(XAB2018B04)Australian Research Council grant DP190100874We thank David Heslop for checking our reversal test result.
文摘The Quantougou(QTG) Fauna in central Lanzhou Basin is an important late Mid-Miocene fauna on the northeastern Tibetan Plateau margin,but its numerical age remains a matter of debate.Here,we present a new magnetostratigraphic record for a fluvio-lacustrine section to further constrain the age of the QTG Fauna.Results suggest that the studied section spans from polarity chrons C5Cn.2n to C5 n.2n or C5 An.1n,with ages of ca.16.5 Ma to 10 Ma or 16.5 Ma to 12 Ma.The QTG Fauna is located at the top of polarity chron C5r.3 r or C5 Ar.2 r,which corresponds to an age of 11.7 Ma or 12.8 Ma for the fauna.Accordingly,the associated Myocricetodontinae(a subfamily of Gerbillidae,Rodentia) is suggested to have appeared in the Lanzhou Basin at 11.7 Ma or 12.8 Ma,which is the oldest Myocricetodontinae in East Asia but is still much younger than the ~20 Ma appearance of this subfamily in West and South Asia.Our age data support the interpretation that East Asian Myocricetodontinae originated from South Asia.The QTG fauna further suggest a dry and open grassland environment,which is consistent with global cooling after the Mid-Miocene Climatic Optimum.
文摘Objective: The purpose of the study was to study the effect of Huaier, a traditional Chinese medicine, on the cell cycle adjustment in MOLT4 cells in vitro. Methods: We used MTT assay to test cell viability, flow cytometry to detect cell cycle and apoptosis and western blot to examine the expression of cell-cycle and apoptotic proteins in MOLT4 cells induced by Huaier. Results: Huaier could reduce the viability of MOLT4 cell by inducing G1 arrest and apoptosis. The induction of apoptosis after treatment with Huaier for 24 h was demonstrated in a dose- and time-dependent manner by flow cytometry analysis. G1 arrest induced by Huaier was modulated through the increased expression of Cdki proteins(p21cip/waf1 and p27kip1) with a simultaneous decrease in Cdk2, Cdk4, Cdk6, cyclin D1 and cyclin E expression. Huaier also induced Bax and Bcl-2 expression and activation of Caspase-3. Conclusion: It is firstly demonstrated that Huaier can inhibit proliferation of MOLT4 cells via G1 arrest and apoptosis. These results suggest that Huaier is a cell-cycle anti-cancer drug.
文摘The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have studied the boundary value problems of the complete third-order differential equations u′′′(t) = f (t,u(t),u′(t),u′′(t)). In this paper, we discuss the existence and uniqueness of solutions and positive solutions of the fully third-order ordinary differential equation on [0,1] with the boundary condition u(0) = u′(1) = u′′(1) = 0. Under some inequality conditions on nonlinearity f some new existence and uniqueness results of solutions and positive solutions are obtained.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(61871369)M.M.acknowledges the Youth Innovation Promotion Association of CAS and Shanghai Rising-Star Program(20QA1410200).
文摘Permittivity at microwave frequencies determines the practical applications of microwave dielectric ceramics.The accuracy and universality of the permittivity prediction by Clausius–Mossotti equation depends on the dielectric polarizability(αD)database.The most influentialαD database put forward by Shannon is facing three challenges in the 5 G era:(1)Few data,(2)Simplistic relation and(3)Low frequency(kHz–MHz)oriented.Here,we optimized and extended the Shannon’s database for microwave frequencies by the four-stage multiple linear regression and support vector machine model.In comparison with the conventional database,the optimized and extended databases achieved higher accuracy and expanded the amount of data from 60 to more than 900.Besides,we analyzed the relationships betweenαD and ion characteristics,including ionic radius(IR),atomic number(N),valence state(V)and coordination number(CN).We found that the positive cubic law of“αD~IR3”discussed in Shannon’s work was valid for the IR changed by the N,but invalid for the change caused by the CN.
基金the support from Zhejiang Education Science Planning Project(Grant No.2015SCG356)Zhejiang Public Project of Science and Technology Department(Grant No.2016C31044)Zhejiang Province Soft Science Research Project(Grant No.2016C35040).
文摘Virtual simulation technology has become one of the most popular technologies in the field of engineering education after the multimedia information technology in recent years.This paper,based on the comprehensive integrated simulation and verification module of UG NX software,describes and discusses a novel virtual simulation system teaching(VSST)for numerically controlled machining to support the student engineering training to achieve the theoretical knowledge and practical techniques in numerically controlled machining.The findings of a study designed to evaluate the impact of VSST for the development of numerically controlled machining course are presented here.In addition,analysis of the follow-up surveys indicates that the VSST method enables to provide the concrete experience of interaction between the students and the simulation environment and to further stimulate students’interest in learning,so that the students who used VSST achieve significantly higher results than their co-workers.
基金the National Natural Science Foundation of China(51772005,51132001,and 52032012)Beijing Key Laboratory for Magnetoelectric Materials and Devices。
文摘Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response refers to a variety of extensional,contractional,or shear modes of crystals,and also relies on boundary conditions from morphology design.However,to pursue fundamental torsion actuation in an integrated piezoceramic component is still a long-term tough task due to nil twist mode limited by microscopic crystal mirror symmetry.Herein,we demonstrate a design of cofired monolithic actuators to originally overcome this obstacle.The prototype device is composed of two sets of stacked actuation subunits that work on artificially reverse face shear modes,and their chiral stiffness couplings will synergistically contribute to synthetic twist outputs at a broad bandwidth.Finite element simulation reveals twist displacements are highly tunable by manipulating the geometrical dimensions.Transverse deflection measurements manifest the stable and sizeable linear actuation response to applied electric fields(around 3.7μm under 40 V at 1 Hz).Importantly,the design actually introduces a more general route to enable arbitrary modes and actuation states in integrated piezoceramic components.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41888101)National Natural Science Fund for Distinguished Young Scholars (Grant No. 41525007)。
文摘A deeper understanding of hyperthermal events in the Earth’s history can provide an important scientific basis for understanding and coping with global warming in the Anthropocene. Two types of hyperthermal events are classified based on the characteristics of the carbon isotope excursion(CIE) of the five representative hyperthermal events in the Mesozoic and Cenozoic. The first type is overall characterized by negative CIEs(NCHE) and represented by the Permian-Triassic boundary event(PTB, ~252 Ma), the early Toarcian oceanic anoxic event(TOAE, ~183 Ma), and the Paleocene-Eocene Thermal Maximum event(PETM, ~56 Ma). The second type is overall characterized by positive CIEs(PCHE) and represented by the early Aptian oceanic anoxic event(OAE1 a, ~120 Ma) and the latest Cenomanian oceanic anoxic event(OAE2, ~94 Ma).Hyperthermal events of negative CIEs(NCHE), lead to dramatic changes in temperature, sedimentation, and biodiversity. These events caused frequent occurrence of terrestrial wildfires, extreme droughts, acid rain, destruction of ozone layer, metal poisoning(such as mercury), changes in terrestrial water system, and carbonate platform demise, ocean acidification, ocean anoxia in marine settings, and various degree extinction of terrestrial and marine life, especially in shallow marine. In contrast,hyperthermal events of positive CIEs(PCHE), result in rapid warming of seawater and widespread oceanic anoxia, large-scale burial of organic matter and associated black shale deposition, which exerted more significant impacts on deep-water marine life,but little impacts on shallow sea and terrestrial life. While PCHEs were triggered by volcanism associated with LIPs in deep-sea environment, the released heat and nutrient were buffered by seawater due to their eruption in the deep sea, thus exerted more significant impacts on deep-marine biota than on shallow marine and terrestrial biota. This work enriches the study of hyperthermal events in geological history, not only for the understanding of hyperthermal events themselves, large igneous provinces, marine and terrestrial environment changes, mass extinctions, but also for providing a new method to identify the types of hyperthermal events and the inference of their driving mechanism based on the characteristics of carbon isotopic excursions and geological records.
基金Australian Research Council(ARC)for funding received under the ARC Discovery Project scheme(DP180102752)the financial support via the ARC DECRA scheme(DE160100715)+1 种基金the support from the Shuguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(18SG035)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(KF2015)。
文摘Two-dimensional(2D)metal oxides and chalcogenides(MOs&MCs)have been regarded as a new class of promising electro-and photocatalysts for many important chemical reactions such as hydrogen evolution reaction,CO_(2) reduction reaction and N2 reduction reaction in virtue of their outstanding physicochemical properties.However,pristine 2D MOs&MCs generally show the relatively poor catalytic performances due to the low electrical conductivity,few active sites and fast charge recombination.Therefore,considerable efforts have been devoted to engineering 2D MOs&MCs by rational structural design and chemical modification to further improve the catalytic activities.Herein,we comprehensively review the recent advances for engineering technologies of 2D MOs&MCs,which are mainly focused on the intercalation,doping,defects creation,facet design and compositing with functional materials.Meanwhile,the relationship between morphological,physicochemical,electronic,and optical properties of 2D MOs&MCs and their electro-and photocatalytic performances is also systematically discussed.Finally,we further give the prospect and challenge of the field and possible future research directions,aiming to inspire more research for achieving high-performance 2D MOs&MCs catalysts in energy storage and conversion fields.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11562016 and 11672175)
文摘Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.
基金The authors would like to acknowledge the supports from the Key-Area Research and Development Program of Guangdong Province(2020B010176001)the National Natural Science Foundation of China(61871369)M.S.Ma acknowledges the Youth Innovation Promotion Association of CAS and Shanghai Rising-Star Program(20QA1410200).
文摘Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of practical use for permittivity prediction,unsatisfactory predictability and universality impede rational design of new high-performance materials.In this work,based on a dataset of 254 single-phase microwave dielectric ceramics(MWDCs),machine learning(ML)methods established a high accuracy model for permittivity prediction and gave insights of quantitative chemistry/structureproperty relationships.We employed five commonly-used algorithms,and introduced 32 intrinsic chemical,structural and thermodynamic features which have correlations with permittivity for modeling.Machine learning results help identify the permittivity decisive factors,including polarizability per unit volume,average bond length,and average cell volume per atom.The feature-property relationships were discussed.The optimal model constructed by support vector regression with radial basis function kernel was validated its superior predictability and generalization by verification dataset.Low permittivity material systems were screened from a dataset of~3300 materials without reported microwave permittivity by high-throughput prediction using optimal model.Several predicted low permittivity ceramics were synthesized,and the experimental results agree well with ML prediction,which confirmed the reliability of the prediction model.
基金supported by grants from the National Natural Science Foundation of China(81802391 to Q.G.,81872313 and 81672776 to Y.L.,and 61973003 to R.Y.)Natural Science Foundation of Anhui Province(1808085QH266 to Q.G.)Anhui Provincial Key Laboratory Performance Project(2017070503B041 and 2018080503B0031 to S.H.).
文摘Dear Editor,Signal transduction takes the responsibility of translating extracellular information into specific cellular activities,enabling cells,including cancer cells,to respond exquisitely to extracellular guidance cues.N6-methyladenosine(m^(6)A),the most pervasive and abundant modification within eukaryotic mRNAs,is known to have specific effects on cellular activities relevant to cancer.1 Despite the fact that m^(6)A methylation is a dynamic event involving a series of enzymes,it remains unknown whether signal transduction,much less extracellular signaling molecules,uses m^(6)A methylation as an effector mechanism in cancer.
基金supports are from the Major Program of the National Natural Science Foundation of China(50932007)the State Key Development Program for Basic Research of China(973-Project 2009CB613305)Guangdong Science and Technology Department(GDSTC,Nos.2009A090100006,2010B090300016).
文摘Surface modification of barium titanate particles has been carried out using a wet chemical method.The microstructural and dielectric properties of the ceramics made from surface modified particles were extensively investigated by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and dielectric properties measurements.The breakdown strength increased by 69%and 117%for the Al_(2)O_(3) and B_(2)O_(3)–SiO_(2) modified ceramics,respectively.An energy storage density of up to 3.2 J/cm^(3) has been obtained.The suppression of grain boundary electron transport and reduction in pore defects lead to the energy storage properties enhancement of the modified ceramics.These results indicated that surface modification of ceramic particles is a promising approach to obtain dielectric ceramics with high energy storage density.
基金the financial support from the Australian Research Council(ARC)in the form of ARC Discovery Grantssupport via the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘Morphotropic phase boundary(MPB)containing piezoelectric systems generally exhibit enhanced piezoelectric performance at compositions within,or close to,the MPB region.The mechanism/s underlying such enhancement,however,are still contentious due to complex micro/nanostructure and apparently inherent local structural variability associated with octahedral tilt disorder/platelet precipitates in such piezoelectric materials.This paper reviews some recent structural analysis results from Bi_(0.5)Na_(0.5)TiO_(3)(BNT)and other binary,lead-free,piezoelectric materials systems derived from it via electron diffraction and in situ neutron diffraction.The results suggest that intrinsically existing local microstructure(LMS)in BNT essentially continues across the MPB region.The LMS,originating from inherent octahedral tilt disorder,is strongly temperature-,electric field-,pressure-and chemical composition-dependent,and may help to explain a series of phenomena observed in BNT-based binary materials systems,including the enhanced piezoelectric effect in the region of the MPB.
基金supported by the National Key R&D Program of China(No.2021YFB3800604 and No.2021YFA0716502)Shanghai Pilot Program for Basic Research-Chinese Academy of Science Shanghai Branch(JCYJ-SHFY-2022-002)+1 种基金the Instrument Developing Project of Chinese Academy of Sciences(No.ZDKYYQ20180004)the Shanghai Sailing Program(No.20YF1455600)and Hengdian Group Holding Co.LTD。
文摘Local electric-field around multitype pores(dielectric pore,interface pore,electrode pore)in multilayer ceramic capacitors(MLCCs)was investigated using Kelvin probe force microscopy combined with the finite element simulation to understand the effect of pores on the electric reliability of MLCCs.Electricfield is found to be concentrated significantly in the vicinity of these pores and the strength of the local electric-field is 1.5e5.0 times of the nominal strength.Unexpectedly,the concentration degree of the pores in the inner electrode is much higher than that in the dielectrics and dielectric-electrode interfaces.Meanwhile,geometry orientations are found to have a remarkable influence on the local electric field strength.The pores act as an insulation degradation precursor via local electric,thermal center,and oxygen vacancies accumulation center.Such unusual local electric field concentration of multitype pores can provide new insights into the understanding of insulation degradation evolution,processing tailoring and design optimization for MLCCs.