Polyacrylonitrile(PAN)with C≡N bonds can be converted to nitrogen-doped carbon during carbonization,which enhances electronic conductivity by compensating for the deficiency of the Li_(2)ZnTi_(3)O_(8)(LZTO)anode.In t...Polyacrylonitrile(PAN)with C≡N bonds can be converted to nitrogen-doped carbon during carbonization,which enhances electronic conductivity by compensating for the deficiency of the Li_(2)ZnTi_(3)O_(8)(LZTO)anode.In this study,LZTO was modified by carbonizing a homogeneous PAN/LZTO powder mixture at approximately 800℃for 5 h in nitrogen stream to uniformly coat nitrogen-doped carbon around the LZTO particles and to yield nitrogen-doped LZTO.PAN-60 exhibited a capacity retention of 74.8%as the current density increased from 0.1 to 1.6 A g−1,and had charge/discharge capacities of 250.1/250.8 mAh g−1 even after 1100 cycles at 0.5 A g−1.Structural and compositional analysis along with electrochemical tests showed that the uniform nitrogen-doped carbon coating and the nitrogen-doped LZTO favor electron transfer,while the defects induced by nitrogen-doping in LZTO promote Li-ion migration.The enhanced electronic and ionic conductivities are favorable to alleviate the polarization during cycling,and thus are responsible for the optimized performance.展开更多
基金project ZR2019MEM029 of Shandong Provincial Natural Science Foundation,PR China,and National Natural Science Foundation of China(51902189).Supplementary materials。
文摘Polyacrylonitrile(PAN)with C≡N bonds can be converted to nitrogen-doped carbon during carbonization,which enhances electronic conductivity by compensating for the deficiency of the Li_(2)ZnTi_(3)O_(8)(LZTO)anode.In this study,LZTO was modified by carbonizing a homogeneous PAN/LZTO powder mixture at approximately 800℃for 5 h in nitrogen stream to uniformly coat nitrogen-doped carbon around the LZTO particles and to yield nitrogen-doped LZTO.PAN-60 exhibited a capacity retention of 74.8%as the current density increased from 0.1 to 1.6 A g−1,and had charge/discharge capacities of 250.1/250.8 mAh g−1 even after 1100 cycles at 0.5 A g−1.Structural and compositional analysis along with electrochemical tests showed that the uniform nitrogen-doped carbon coating and the nitrogen-doped LZTO favor electron transfer,while the defects induced by nitrogen-doping in LZTO promote Li-ion migration.The enhanced electronic and ionic conductivities are favorable to alleviate the polarization during cycling,and thus are responsible for the optimized performance.