The successful synthesis of the pentazolate anion(cyclo-N-5)has been a great breakthrough in the field of energetic materials.However,the detection methods for these energetic materials based on the pentazolate anion ...The successful synthesis of the pentazolate anion(cyclo-N-5)has been a great breakthrough in the field of energetic materials.However,the detection methods for these energetic materials based on the pentazolate anion are quite rare.Herein,two fluorescent probes for cyclo-N-5anion were designed.Sensor 1(TPE2N)was synthesized with a tetraphenylethylene functionalized by two cationic groups which can generate strong electrostatic interactions with pentazolate anion and result in specific fluorescent changes.Sensor 2 was designed based on sensor 1 and supramolecular cucurbit[7]uril(CB[7]).The unique structural features of CB[7]provide sites for the interaction between the cations and N-5anion in its cavity,which would generate a platform for the detection and enhance the recognition performance.Isothermal titration calorimetry(ITC)experiment and fluorescence titration experiment indicate the binding molar ratio between sensor 1 with CB[7]is 1:2.Both sensors display typical aggregation-induced emission(AIE)features and good water-solubility.The sensors demonstrate excellent sensitivity to pentazole hydrazine salt with high enhancement constant(sensor 1:1.34×10^(6);sensor 2:3.78×10^(6))and low limit of detection(LOD:sensor 1=4.33μM;sensor 2=1.54μM).The formation of an AIE-based supramolecular sensor effectively improves the sensitivity to N-5anion.In addition,the probes also have good selectivity of N-5anion salts.The research would shed some light on the design of novel fluorescent sensors to detect pentazolate-based molecules and provides an example of supramolecular chemistry combined with fluorescent probes.展开更多
A type of λ/4–λ/4 ultra-broadband antireflective coating has been developed using modified low refractive silica and high refractive silica layers by a sol–gel dip coating method for amplifier blast shields of the...A type of λ/4–λ/4 ultra-broadband antireflective coating has been developed using modified low refractive silica and high refractive silica layers by a sol–gel dip coating method for amplifier blast shields of the Shen Guang Ⅱ high power laser facility(SG-Ⅱ facility). Deposition of the first layer(high refractive index silica) involves baking at 200℃ in the post-treatment step. The second layer(low refractive index, n = 1.20) uses low refractive index silica sol modified by acid catalysis. Thermal baking at temperatures no less than 500℃ for 60 min offers chemical stability, ethanol scratch resistance, and resistance to washing with water. The average residual reflection of dual-side-coated fused silica glass was less than 1% in the spectral range from 450 to 950 nm. Transmission gain has been evaluated by taking into account angular light, and the results show that the transmission gain increases with increasing light incidence. Even at 60°, the transmission spectrum of the broadband antireflective coating effectively covered the main absorption peak of Nd:glass.展开更多
A λ∕4–λ∕4 broadband antireflective(AR) coating is developed with a sol-gel dip-coating method. By adding SAR-5 organosilicon resin into a base-catalyzed silica sol top layer and treating at 300°C, a broadban...A λ∕4–λ∕4 broadband antireflective(AR) coating is developed with a sol-gel dip-coating method. By adding SAR-5 organosilicon resin into a base-catalyzed silica sol top layer and treating at 300°C, a broadband AR coating used for blast shields with a high average transmission of 99.34%(450–950 nm) and good hydrophobicity(with a water-contact angle of 119°) was obtained. After being subjected to rubbing 50 times and being maintained at a relative humidity of around 95% for 50 days, the average transmission of the coating decreased by0.29% and 0.04%, respectively. This indicates that the organically modified silica(ORMOSIL) broadband AR coating has good abrasion resistance and humidity stability.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22175093 and 22007047)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200474)the China Postdoctoral Science Foundation(Grant No.2022M721615)。
文摘The successful synthesis of the pentazolate anion(cyclo-N-5)has been a great breakthrough in the field of energetic materials.However,the detection methods for these energetic materials based on the pentazolate anion are quite rare.Herein,two fluorescent probes for cyclo-N-5anion were designed.Sensor 1(TPE2N)was synthesized with a tetraphenylethylene functionalized by two cationic groups which can generate strong electrostatic interactions with pentazolate anion and result in specific fluorescent changes.Sensor 2 was designed based on sensor 1 and supramolecular cucurbit[7]uril(CB[7]).The unique structural features of CB[7]provide sites for the interaction between the cations and N-5anion in its cavity,which would generate a platform for the detection and enhance the recognition performance.Isothermal titration calorimetry(ITC)experiment and fluorescence titration experiment indicate the binding molar ratio between sensor 1 with CB[7]is 1:2.Both sensors display typical aggregation-induced emission(AIE)features and good water-solubility.The sensors demonstrate excellent sensitivity to pentazole hydrazine salt with high enhancement constant(sensor 1:1.34×10^(6);sensor 2:3.78×10^(6))and low limit of detection(LOD:sensor 1=4.33μM;sensor 2=1.54μM).The formation of an AIE-based supramolecular sensor effectively improves the sensitivity to N-5anion.In addition,the probes also have good selectivity of N-5anion salts.The research would shed some light on the design of novel fluorescent sensors to detect pentazolate-based molecules and provides an example of supramolecular chemistry combined with fluorescent probes.
文摘A type of λ/4–λ/4 ultra-broadband antireflective coating has been developed using modified low refractive silica and high refractive silica layers by a sol–gel dip coating method for amplifier blast shields of the Shen Guang Ⅱ high power laser facility(SG-Ⅱ facility). Deposition of the first layer(high refractive index silica) involves baking at 200℃ in the post-treatment step. The second layer(low refractive index, n = 1.20) uses low refractive index silica sol modified by acid catalysis. Thermal baking at temperatures no less than 500℃ for 60 min offers chemical stability, ethanol scratch resistance, and resistance to washing with water. The average residual reflection of dual-side-coated fused silica glass was less than 1% in the spectral range from 450 to 950 nm. Transmission gain has been evaluated by taking into account angular light, and the results show that the transmission gain increases with increasing light incidence. Even at 60°, the transmission spectrum of the broadband antireflective coating effectively covered the main absorption peak of Nd:glass.
文摘A λ∕4–λ∕4 broadband antireflective(AR) coating is developed with a sol-gel dip-coating method. By adding SAR-5 organosilicon resin into a base-catalyzed silica sol top layer and treating at 300°C, a broadband AR coating used for blast shields with a high average transmission of 99.34%(450–950 nm) and good hydrophobicity(with a water-contact angle of 119°) was obtained. After being subjected to rubbing 50 times and being maintained at a relative humidity of around 95% for 50 days, the average transmission of the coating decreased by0.29% and 0.04%, respectively. This indicates that the organically modified silica(ORMOSIL) broadband AR coating has good abrasion resistance and humidity stability.