p21Waf/Cip1, p16INK4a and p14ARF (p19ARF in mice) have been demonstrated to be degraded by REGγ-proteasome pathway in an ATP- and ubiquitin-independent manner in vitro. However, the in vivo roles of REGγ mediated-de...p21Waf/Cip1, p16INK4a and p14ARF (p19ARF in mice) have been demonstrated to be degraded by REGγ-proteasome pathway in an ATP- and ubiquitin-independent manner in vitro. However, the in vivo roles of REGγ mediated-degradation of p21Waf/Cip1, p16INK4a and p14ARF remain unclear. In this study, we showed enhanced expression of p21Waf/Cip1, p16INK4a and p19ARF in multiple tissues from REGg–/– mice compared to REGg+/+ mice. Furthermore, we examined the expression of p21Waf/Cip1, p16INK4a and p14ARF in different cancer tissues and observed that the REGγ protein levels were highly expressed in different human cancers while the level of p21Waf/Cip1, p16INK4a and p14ARF appears to be inversely correlated. These results demonstrate that REGγ may exert its function in physiological and pathological conditions through degradation of p21Waf/Cip1, p16INK4a and p14ARF in vivo.展开更多
文摘p21Waf/Cip1, p16INK4a and p14ARF (p19ARF in mice) have been demonstrated to be degraded by REGγ-proteasome pathway in an ATP- and ubiquitin-independent manner in vitro. However, the in vivo roles of REGγ mediated-degradation of p21Waf/Cip1, p16INK4a and p14ARF remain unclear. In this study, we showed enhanced expression of p21Waf/Cip1, p16INK4a and p19ARF in multiple tissues from REGg–/– mice compared to REGg+/+ mice. Furthermore, we examined the expression of p21Waf/Cip1, p16INK4a and p14ARF in different cancer tissues and observed that the REGγ protein levels were highly expressed in different human cancers while the level of p21Waf/Cip1, p16INK4a and p14ARF appears to be inversely correlated. These results demonstrate that REGγ may exert its function in physiological and pathological conditions through degradation of p21Waf/Cip1, p16INK4a and p14ARF in vivo.