LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)layered oxides have been regarded as promising alternative cathodes for the next generation of high-energy lithium ion batteries(LIBs)due to high discharge capacities and energy ...LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)layered oxides have been regarded as promising alternative cathodes for the next generation of high-energy lithium ion batteries(LIBs)due to high discharge capacities and energy densities at high operation voltage.However,the capacity fading under high operation voltage still restricts the practical application.Herein,the capacity degradation mechanism of NCM811 at atomic-scale is studied in detail under various cut-off voltages using aberration-corrected scanning transmission electron microscopy(STEM).It is observed that the crystal structure of NCM811 evolution from a layered structure to a rock-salt phase is directly accompanied by serious intergranular cracks under 4.9 V,which is distinguished from the generally accepted structure evolution of layered,disordered layered,defect rock salt and rock salt phases,also observed under 4.3 and 4.7 V.The electron energy loss spectroscopy analysis also confirms the reduction of Ni and Co from the surface to the bulk,not the previously reported only Li/Ni interlayer mixing.The degradation mechanism of NCM811 at a high cut-off voltage of4.9 V is attributed to the formation of intergranular cracks induced by defects,the direct formation of the rock salt phase,and the accompanied reduction of Ni^(2+)and Co^(2+)phases from the surface to the bulk.展开更多
Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density ...Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.展开更多
Carbon dots(CDs),as a solid-state phosphor,have great potential for application in a new solid-state lighting device—laser diode(LD).For high efficiency LD devices,both high photoluminescence quantum yield(PLQY)and h...Carbon dots(CDs),as a solid-state phosphor,have great potential for application in a new solid-state lighting device—laser diode(LD).For high efficiency LD devices,both high photoluminescence quantum yield(PLQY)and high photothermal stability of CDs are essential.Herein,yellow CDs@ZIF-8 composites with high structural stability were prepared by encapsulating CDs in zeolitic imidazolate framework-8(ZIF-8)through electrostatic adsorption between CDs and ZIF-8,in which CDs with amino groups on the surface were used as luminescent feeders and ZIF-8 was used as a protective layer matrix.The asprepared CDs@ZIF-8 not only possess a high PLQY of up to 81.17%,but also maintain a high fluorescence intensity of 100%and 80%under long-term illumination(60 min)and high temperature(478 K),respectively.The hydrogen bonding between CDs and ZIF-8 in the encapsulated structure can enhance the degree of electron cloud delocalization,which can improve the PLQY of CDs@ZIF-8.Meanwhile,CDs@ZIF-8has high photothermal stability due to the binding effect of ZIF-8 on CDs and high thermal stability of ZIF-8.The white LD device,fabricated from CDs@ZIF-8 as a phosphor in combination with 450 nm blue LD,has a color coordinate of(0.37,0.33),a color temperature of 3762 K,and a high color rendering index of 86.This study provides a new strategy for the construction of solid-state phosphors with high PLQY and high photothermal performance.展开更多
Carbon dots(CDs)with precise targeting function show great potential in the field of drug delivery therapeutics.In this study,the functionalized nucleus-targeting orange-emissive CDs with nuclear localization sequence...Carbon dots(CDs)with precise targeting function show great potential in the field of drug delivery therapeutics.In this study,the functionalized nucleus-targeting orange-emissive CDs with nuclear localization sequence(NLS)were loaded with adriamycin(DOX)to obtain a nucleus-targeting orange-emissive CDs drug delivery system(CDs-NLS-DOX),which delivered DOX to tumor cell nuclei to enhance its anti-tumor activity.The drug carrier orange-emissive CDs showed excitation-independent behavior,stable and enhanced imaging capability and good biocompatibility in vitro and in vivo.Meanwhile,the CDs-NLS could target the nuclei efficiently,and the CDs-NLS-DOX complexes had a high drug loading rate(59.4%)after loading DOX,exhibiting p H-dependent DOX release behavior through breaking acylhydrazone bond in a weak acidic environment.In addition,the CDs-NLS-DOX complexes exhibited an enhanced killing activity against human hepatoma cells(HepG2).The in vivo therapeutic effects on HepG2 nude mice transplanted tumors indicated the CDs-NLS-DOX had a stronger ability to inhibit tumor growth compared to free DOX.In short,CDs-NLS-DOX is expected to be a precise and efficient nucleus-targeting nano-drug delivery system for tumor treatment.展开更多
Developing non-conjugated luminescent polymers(NCLPs)with fluorescence and long-lived roomtemperature phosphorescence is of great significance for revealing the essence of NCLPs luminescence,which has gradually attrac...Developing non-conjugated luminescent polymers(NCLPs)with fluorescence and long-lived roomtemperature phosphorescence is of great significance for revealing the essence of NCLPs luminescence,which has gradually attracted the attention of researchers in recent years.Herein,polymethylol(PMO)and poly(3-butene-1,2-diol)(PBD)with polyhydroxy structures were prepared and their luminescence behaviors were investigated to reveal the clusteroluminescence(CL)mechanism.Compared with polyvinyl alcohol with non-luminescent behavior,PMO and PBD exhibit cyan-blue fluorescence with quantum yields of ca.12%and green room-temperature phosphorescence with lifetimes of ca.89 ms in the solid state.Both fluorescence and phosphorescence exhibit typical excitation-dependent CL behavior.Experimental and theoretical analyses show that the strong hydrogen-bonding interaction of PMO and PBD greatly promotes the formation of oxygen clusters and the through-space n-n interaction of oxygen atoms,enabling fluorescence and phosphorescence emission.Our results have enormous implications for understanding the CL mechanism of NCLPs and provide a new polymer design strategy for the rational design of novel NCLPs materials.展开更多
As a new type of luminescent material,carbon dots(CDs)have attracted increased attention for their superior optical properties in recent years.However,solidstate fluorescent CDs,especially with red emission,are still ...As a new type of luminescent material,carbon dots(CDs)have attracted increased attention for their superior optical properties in recent years.However,solidstate fluorescent CDs,especially with red emission,are still a major challenge.Here,CDs with solid-state red emission were synthesized by co-doping of N and B using the one-step microwave method.The CD powder exhibits excitation-independent solid-state red fluorescence without any dispersion matrices,with optimum solid-state fluorescence wavelength of 623 nm.The hydrogen bonding interaction in CDs is helpful for solid-state fluorescence of CDs.The IG/ID value of CDs reaches up to 3.49,suggesting their very high graphitization degree,which is responsible for their red emission.In addition,CDs show the concentration-induced multicolor emission,which is attributed to the decreased energy gap in the high concentrated CD solution.To exploit their concentration-dependent emission,CDs with changing ratio in matrices are applied as a color-converting layer on ultraviolet chip to fabricate multicolor light-emitting diodes with light coordinates of(0.33,0.38),(0.41,0.48),(0.49,0.44),and(0.67,0.33),which belong to green,yellow,orange,and red light,respectively.展开更多
The Golgi apparatus is one of the important organelles,where the final processing and packaging of cellular secretions(such as proteins)are completed.The disorder of Golgi apparatus structure and function will induce ...The Golgi apparatus is one of the important organelles,where the final processing and packaging of cellular secretions(such as proteins)are completed.The disorder of Golgi apparatus structure and function will induce many diseases.Therefore,monitoring the morphological structure of Golgi apparatus is crucial for the diagnosis and treatment of relevant diseases.In order to achieve Golgi apparatus-targeting imaging,the strategy of targeting unit inheritance was adopted and carbon dots(CDs)with Golgi apparatus-targeting ability were synthesized by one-step hydrothermal method with L-ascorbic acid with high reactivity and reducibility as the carbon source and L-cysteine as the targeting unit.CDs have a certain amount of cysteine residues on their surface,and have excitation dependence,satisfactory fluorescence and cysteine residues stability and low toxicity.As an imaging agent,CDs can be used for targeting imaging of Golgi apparatus.展开更多
High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as un...High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as unique fluorescence properties,anti-photobleaching,low toxicity,fine biocompatibility and high penetration depth in tissues,have been considered as a potential candidate in cell imaging fluorescent probes.Herein,N,S-codoped green-emissive CQDs(QY=64.03%)were synthesized by the one-step hydrothermal method,with m-phenylenediamine as the carbon and nitrogen source,and L-cysteine as the nitrogen and sulfur dopant,under the optimum condition of 200℃ reaction for 2 h.Their luminescence was found to originate from the surface state.In light of the satisfactory photobleaching resistance and the low cytotoxicity,CQDs were used as a cell imaging probe for HeLa cell imaging.The results clearly indicate that cells can be labeled with CQDs,which can not only enter the cytoplasm,but also enter the nucleus through the nuclear pore,showing their broad application prospect in the field of cell imaging.展开更多
基金supported by the National Natural Science Foundation of China(U2032131)the Key R&D Program of Shaanxi Province(2021GY-118)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD012 and 2021SXTD012)。
文摘LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)layered oxides have been regarded as promising alternative cathodes for the next generation of high-energy lithium ion batteries(LIBs)due to high discharge capacities and energy densities at high operation voltage.However,the capacity fading under high operation voltage still restricts the practical application.Herein,the capacity degradation mechanism of NCM811 at atomic-scale is studied in detail under various cut-off voltages using aberration-corrected scanning transmission electron microscopy(STEM).It is observed that the crystal structure of NCM811 evolution from a layered structure to a rock-salt phase is directly accompanied by serious intergranular cracks under 4.9 V,which is distinguished from the generally accepted structure evolution of layered,disordered layered,defect rock salt and rock salt phases,also observed under 4.3 and 4.7 V.The electron energy loss spectroscopy analysis also confirms the reduction of Ni and Co from the surface to the bulk,not the previously reported only Li/Ni interlayer mixing.The degradation mechanism of NCM811 at a high cut-off voltage of4.9 V is attributed to the formation of intergranular cracks induced by defects,the direct formation of the rock salt phase,and the accompanied reduction of Ni^(2+)and Co^(2+)phases from the surface to the bulk.
基金the financial support from the National Natural Science Foundation of China(51672033,U1610255,U1703251).
文摘Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
基金financially supported by the Foundational Research Project of Shanxi Province(No.20210302123164)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Nos.2022SX-TD012,2021SX-TD012)Shanxi Scholarship Council of China(No.2020–051)。
文摘Carbon dots(CDs),as a solid-state phosphor,have great potential for application in a new solid-state lighting device—laser diode(LD).For high efficiency LD devices,both high photoluminescence quantum yield(PLQY)and high photothermal stability of CDs are essential.Herein,yellow CDs@ZIF-8 composites with high structural stability were prepared by encapsulating CDs in zeolitic imidazolate framework-8(ZIF-8)through electrostatic adsorption between CDs and ZIF-8,in which CDs with amino groups on the surface were used as luminescent feeders and ZIF-8 was used as a protective layer matrix.The asprepared CDs@ZIF-8 not only possess a high PLQY of up to 81.17%,but also maintain a high fluorescence intensity of 100%and 80%under long-term illumination(60 min)and high temperature(478 K),respectively.The hydrogen bonding between CDs and ZIF-8 in the encapsulated structure can enhance the degree of electron cloud delocalization,which can improve the PLQY of CDs@ZIF-8.Meanwhile,CDs@ZIF-8has high photothermal stability due to the binding effect of ZIF-8 on CDs and high thermal stability of ZIF-8.The white LD device,fabricated from CDs@ZIF-8 as a phosphor in combination with 450 nm blue LD,has a color coordinate of(0.37,0.33),a color temperature of 3762 K,and a high color rendering index of 86.This study provides a new strategy for the construction of solid-state phosphors with high PLQY and high photothermal performance.
基金supported by the National Natural Science Foundation of China(Nos.82172048 and U21A20378)Scientific Research Project of Shanxi Provincial Health Commission(No.2023120)+4 种基金Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-FR010)Shanxi Center of Technology Innovation for Controlled and Sustained Release of Nanodrugs(No.202104010911026)Foundational Research Project of Shanxi Province(No.202203021211159)Four“Batches”Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province(No.2023XM012)Shanxi Scholarship Council of China(No.2022–039)。
文摘Carbon dots(CDs)with precise targeting function show great potential in the field of drug delivery therapeutics.In this study,the functionalized nucleus-targeting orange-emissive CDs with nuclear localization sequence(NLS)were loaded with adriamycin(DOX)to obtain a nucleus-targeting orange-emissive CDs drug delivery system(CDs-NLS-DOX),which delivered DOX to tumor cell nuclei to enhance its anti-tumor activity.The drug carrier orange-emissive CDs showed excitation-independent behavior,stable and enhanced imaging capability and good biocompatibility in vitro and in vivo.Meanwhile,the CDs-NLS could target the nuclei efficiently,and the CDs-NLS-DOX complexes had a high drug loading rate(59.4%)after loading DOX,exhibiting p H-dependent DOX release behavior through breaking acylhydrazone bond in a weak acidic environment.In addition,the CDs-NLS-DOX complexes exhibited an enhanced killing activity against human hepatoma cells(HepG2).The in vivo therapeutic effects on HepG2 nude mice transplanted tumors indicated the CDs-NLS-DOX had a stronger ability to inhibit tumor growth compared to free DOX.In short,CDs-NLS-DOX is expected to be a precise and efficient nucleus-targeting nano-drug delivery system for tumor treatment.
基金the financial support of the National Natural Science Foundation of China(No.52003254)the Shanxi Scholarship Council of China(No.2020–051)+3 种基金the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-TD012)the Foundational Research Project of Shanxi Province(Nos.20210302123164,201901D211282,201901D211283)the Science Foundation of North University of China(No.XJJ201925)the MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University(No.2021MSF01)。
文摘Developing non-conjugated luminescent polymers(NCLPs)with fluorescence and long-lived roomtemperature phosphorescence is of great significance for revealing the essence of NCLPs luminescence,which has gradually attracted the attention of researchers in recent years.Herein,polymethylol(PMO)and poly(3-butene-1,2-diol)(PBD)with polyhydroxy structures were prepared and their luminescence behaviors were investigated to reveal the clusteroluminescence(CL)mechanism.Compared with polyvinyl alcohol with non-luminescent behavior,PMO and PBD exhibit cyan-blue fluorescence with quantum yields of ca.12%and green room-temperature phosphorescence with lifetimes of ca.89 ms in the solid state.Both fluorescence and phosphorescence exhibit typical excitation-dependent CL behavior.Experimental and theoretical analyses show that the strong hydrogen-bonding interaction of PMO and PBD greatly promotes the formation of oxygen clusters and the through-space n-n interaction of oxygen atoms,enabling fluorescence and phosphorescence emission.Our results have enormous implications for understanding the CL mechanism of NCLPs and provide a new polymer design strategy for the rational design of novel NCLPs materials.
基金This work was financially supported by the Foundation Research Project of Shanxi Province(Grant Nos.202103021223007,20210302123164,and 20210302124604)the National Natural Science Foundation of China(Grant No.51972221)+2 种基金the Research Project Supported by Shanxi Scholarship Council of China(Grant Nos.2020-051 and HGKY2019027)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0946)the Key Research Program of Lyuliang City(Grant No.GXZDYF2019087).
文摘As a new type of luminescent material,carbon dots(CDs)have attracted increased attention for their superior optical properties in recent years.However,solidstate fluorescent CDs,especially with red emission,are still a major challenge.Here,CDs with solid-state red emission were synthesized by co-doping of N and B using the one-step microwave method.The CD powder exhibits excitation-independent solid-state red fluorescence without any dispersion matrices,with optimum solid-state fluorescence wavelength of 623 nm.The hydrogen bonding interaction in CDs is helpful for solid-state fluorescence of CDs.The IG/ID value of CDs reaches up to 3.49,suggesting their very high graphitization degree,which is responsible for their red emission.In addition,CDs show the concentration-induced multicolor emission,which is attributed to the decreased energy gap in the high concentrated CD solution.To exploit their concentration-dependent emission,CDs with changing ratio in matrices are applied as a color-converting layer on ultraviolet chip to fabricate multicolor light-emitting diodes with light coordinates of(0.33,0.38),(0.41,0.48),(0.49,0.44),and(0.67,0.33),which belong to green,yellow,orange,and red light,respectively.
基金This work was supported by the National Natural Science Foundation of China(82172048 and U21A20378)the Natural Science Foundation of Shanxi Province(202103021223439 and 201901D111419)+4 种基金the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-FR010)the Shanxi Technology Innovation Center for Controlled and Sustained Release of Nano-drugs(202104010911026)the Doctoral Starting Foundation of Shanxi Province(SD2218)the Doctoral Foundation of the Second Hospital of Shanxi Medical University(202201-1)Collaborative Innovation Center of R&D molecular diagnosis,Treatment Technology and targeted drugs for cancer of Shanxi Medical University(5-2-1-A-5).
文摘The Golgi apparatus is one of the important organelles,where the final processing and packaging of cellular secretions(such as proteins)are completed.The disorder of Golgi apparatus structure and function will induce many diseases.Therefore,monitoring the morphological structure of Golgi apparatus is crucial for the diagnosis and treatment of relevant diseases.In order to achieve Golgi apparatus-targeting imaging,the strategy of targeting unit inheritance was adopted and carbon dots(CDs)with Golgi apparatus-targeting ability were synthesized by one-step hydrothermal method with L-ascorbic acid with high reactivity and reducibility as the carbon source and L-cysteine as the targeting unit.CDs have a certain amount of cysteine residues on their surface,and have excitation dependence,satisfactory fluorescence and cysteine residues stability and low toxicity.As an imaging agent,CDs can be used for targeting imaging of Golgi apparatus.
基金supported by the National Natural Science Foundation of China(Grant Nos.51972221 and 51803148)Central Government Guides Local Science and Technology Development Projects(YDZX20201400001722)+1 种基金the Shanxi Provincial Excellent Talents Science and Technology Innovation Project(201805D211001)the Natural Science Foundation of Shanxi Province(201901D211502 and 201901D211501).
文摘High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as unique fluorescence properties,anti-photobleaching,low toxicity,fine biocompatibility and high penetration depth in tissues,have been considered as a potential candidate in cell imaging fluorescent probes.Herein,N,S-codoped green-emissive CQDs(QY=64.03%)were synthesized by the one-step hydrothermal method,with m-phenylenediamine as the carbon and nitrogen source,and L-cysteine as the nitrogen and sulfur dopant,under the optimum condition of 200℃ reaction for 2 h.Their luminescence was found to originate from the surface state.In light of the satisfactory photobleaching resistance and the low cytotoxicity,CQDs were used as a cell imaging probe for HeLa cell imaging.The results clearly indicate that cells can be labeled with CQDs,which can not only enter the cytoplasm,but also enter the nucleus through the nuclear pore,showing their broad application prospect in the field of cell imaging.