Plant pathogenic bacteria deliver effectors into plant cells to suppress immunity and promote pathogen survival;however, these effectors can be recognised by plant disease resistance (R) proteins to activate innate im...Plant pathogenic bacteria deliver effectors into plant cells to suppress immunity and promote pathogen survival;however, these effectors can be recognised by plant disease resistance (R) proteins to activate innate immunity. The bacterial acetyltransferase effectors HopZ5 and AvrBsT trigger immunity in Arabidopsis thaliana genotypes lacking SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1 (SOBER1). Using an Arabidopsis accession, Tscha-1, that naturally lacks functional SOBER1 but is unable to recognise HopZ5, we demonstrate that RESISTANCE TO P. SYRINGAE PV MACULICOLA 1 (RPM1) and RPM1-INTERACTING PROTEIN 4 (RIN4) are indispensable for HopZ5- or AvrBsT-triggered immunity. Remarkably, T166 of RIN4, the phosphorylation of which is induced by AvrB and AvrRpm1, was directly acetylated by HopZ5 and AvrBsT. Furthermore, we demonstrate that the acetylation of RIN4 T166 is required and sufficient for HopZ5- or AvrBsT-triggered RPM1-dependent defence activation. Finally, we show that SOBER1 interferes with HopZ5- or AvrBsT-triggered immunity by deacetylating RIN4 T166. We have thus elucidated detailed molecular mechanisms underlying the activation and suppression of plant innate immunity triggered by two bacterial acetyltransferases, HopZ5 and AvrBsT from different bacterial pathogens.展开更多
基金This research was supported by Basic Science Research Programs through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A1A01060108)Korean government(MSIT)(NRF-2018R1A5A1023599 and NRF-2019R1A2C2084705)。
文摘Plant pathogenic bacteria deliver effectors into plant cells to suppress immunity and promote pathogen survival;however, these effectors can be recognised by plant disease resistance (R) proteins to activate innate immunity. The bacterial acetyltransferase effectors HopZ5 and AvrBsT trigger immunity in Arabidopsis thaliana genotypes lacking SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1 (SOBER1). Using an Arabidopsis accession, Tscha-1, that naturally lacks functional SOBER1 but is unable to recognise HopZ5, we demonstrate that RESISTANCE TO P. SYRINGAE PV MACULICOLA 1 (RPM1) and RPM1-INTERACTING PROTEIN 4 (RIN4) are indispensable for HopZ5- or AvrBsT-triggered immunity. Remarkably, T166 of RIN4, the phosphorylation of which is induced by AvrB and AvrRpm1, was directly acetylated by HopZ5 and AvrBsT. Furthermore, we demonstrate that the acetylation of RIN4 T166 is required and sufficient for HopZ5- or AvrBsT-triggered RPM1-dependent defence activation. Finally, we show that SOBER1 interferes with HopZ5- or AvrBsT-triggered immunity by deacetylating RIN4 T166. We have thus elucidated detailed molecular mechanisms underlying the activation and suppression of plant innate immunity triggered by two bacterial acetyltransferases, HopZ5 and AvrBsT from different bacterial pathogens.