Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection fil...Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection films were improved by annealing. Optical absorption and fluorescence of the solar cells increased after annealing. Lattice constants of F-doped SnO2 anti-reflection layers, which were investigated by X-ray diffraction, decreased after annealing. A mechanism of atomic diffusion of F in SnO2 was discussed. The present work indicated a guideline for spherical silicon solar cells with higher efficiencies.展开更多
文摘Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection films were improved by annealing. Optical absorption and fluorescence of the solar cells increased after annealing. Lattice constants of F-doped SnO2 anti-reflection layers, which were investigated by X-ray diffraction, decreased after annealing. A mechanism of atomic diffusion of F in SnO2 was discussed. The present work indicated a guideline for spherical silicon solar cells with higher efficiencies.