期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Evaluation of Small Interfering RNA Delivery into Cells by Reverse Transfection in Suspension with Cationic Liposomes
1
作者 yoshiyuki hattori Yuki Yoshiike +2 位作者 Maho Honda Hiroaki Ohno Hiraku Onishi 《Pharmacology & Pharmacy》 2017年第5期129-139,共11页
Successful gene silencing by small interfering RNA (siRNA) requires efficient uptake of siRNA into targeted cells. For in vitro transfection of siRNA using cationic liposomes, two types of transfection method are curr... Successful gene silencing by small interfering RNA (siRNA) requires efficient uptake of siRNA into targeted cells. For in vitro transfection of siRNA using cationic liposomes, two types of transfection method are currently being used: conventional (forward;Fw) and reverse (Rev) transfections. Here, to investigate an efficient siRNA transfection method using cationic liposomes, we compared the transfection efficiency of siRNA between Fw-transfection and Rev-transfection methods with various types of cationic liposomes. In Fw-transfection, siRNA/cationic liposomes complex (siRNA lipoplexes) was added to pre-plated cells. In contrast, Rev-transfection was performed by co-incubation of cells with siRNA lipoplexes in suspension. As a result, Rev-transfection with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based or cationic cholesterol derivative-based liposomes could deliver siRNA into the cells via efficient cellular association, and induce an improved gene silencing effect by siRNA compared with Fw-transfection. Furthermore, Rev-transfection did not show increased cytotoxicity compared with Fw-transfection. These findings suggested that Rev-transfection in suspension has better potential for efficient transfection of siRNA into cells with minimal toxicity. 展开更多
关键词 CATIONIC LIPOSOME siRNA Delivery REVERSE TRANSFECTION Tumor CELLS
下载PDF
Optimization of siRNA Delivery Method into the Liver by Sequential Injection of Polyglutamic Acid and Cationic Lipoplex
2
作者 yoshiyuki hattori Shohei Arai +4 位作者 Takuto Kikuchi Megumi Hamada Ryou Okamoto Yoko Machida Kumi Kawano 《Pharmacology & Pharmacy》 2015年第7期302-310,共9页
Previously, we developed a novel siRNA transfer method to the liver by sequential intravenous injection of poly-L-glutamic acid (PGA) and cationic liposome/siRNA complex (cationic lipoplex). In this study, we examined... Previously, we developed a novel siRNA transfer method to the liver by sequential intravenous injection of poly-L-glutamic acid (PGA) and cationic liposome/siRNA complex (cationic lipoplex). In this study, we examined the effects of the charge ratio (+/-) of cationic liposome/siRNA, molecular weight of PGA and cationic lipid of cationic liposome on the biodistribution of siRNA after sequential injection of PGA plus cationic lipoplex. When 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/cholesterol (Chol) lipoplex was intravenously injected into mice, the accumulation of siRNA was mainly observed in the lungs. In contrast, when DOTAP/Chol lipoplex was intravenously injected at 1 min after intravenous injection of PGA, siRNA was largely accumulated in the liver. The charge ratio (+/-) of DOTAP/Chol liposome/siRNA did not affect the biodistribution of siRNA after sequential injection. As regards the molecular weight of PGA, the accumulation of siRNA was observed mainly in the liver after the sequential injection of PGA of 20.5, 38, 64 or 200 kDa plus DOTAP/Chol lipoplex. Furthermore, to examine the effect of cationic lipid of cationic liposome on the biodistribution of siRNA, we prepared other cationic liposomes composed of 1,2-di-O-octadecenyl-3-trimethylammonium propane chloride (DOTMA)/Chol, dimethyldioctade-cylammonium bromide (DDAB)/Chol and O,O’-ditetradecanoyl-N-(α-trimethylammonioacetyl)di-ethanolamine chloride (DC-6-14)/Chol. For the cationic liposomes, the accumulation of siRNA was observed mainly in the liver when their cationic lipoplexes were sequentially injected after injection of PGA into mice. From these findings, sequential injection of PGA plus cationic lipoplex could deliver siRNA efficiently into the liver regardless of the charge ratio (+/-) of lipoplex, lengths of PGA and cationic lipid of liposome. 展开更多
关键词 CATIONIC LIPOSOME siRNA Delivery Polyglutamic Acid LIVER TARGETING SEQUENTIAL Injection
下载PDF
Delivery of Plasmid DNA into Tumors by Intravenous Injection of PEGylated Cationic Lipoplexes into Tumor-Bearing Mice
3
作者 yoshiyuki hattori 《Pharmacology & Pharmacy》 2016年第7期272-282,共11页
For systemic injection of cationic liposome/plasmid DNA (pDNA) complexes (cationic lipoplexes), polyethylene glycol (PEG)-modification (PEGylation) of lipoplexes can enhance their systemic stability. In this study, we... For systemic injection of cationic liposome/plasmid DNA (pDNA) complexes (cationic lipoplexes), polyethylene glycol (PEG)-modification (PEGylation) of lipoplexes can enhance their systemic stability. In this study, we examined whether intravenous injection of PEGylated cationic lipoplexes into tumor-bearing mice could deliver pDNA into tumor tissues and induce transgene expression. PEGylation of cationic liposomes could prevent their agglutination with erythrocytes. However, when PEGylated cationic lipoplexes were injected intravenously into tumor-bearing mice, they accumulated in tumor vascular vessels and did not exhibit transgene expression in tumors with both poor and well-developed vascularization. Furthermore, PEGylated cationic lipoplexes of CpG- free pDNA could not increase transgene expression in tumors after intravenous injection. These results suggested that PEGylation could not extravasate cationic lipoplexes from vascular vessels in tumors and abolished transgene expression although it enhanced the systemic stability of cationic lipoplexes by avoiding interactions with blood components such as erythrocytes. Successful delivery of pDNA to tumors by PEGylated cationic liposomes will require a rational strategy and the design of liposomal delivery systems to overcome the issue associated with the use of PEG. 展开更多
关键词 Cationic Liposome LIPOPLEX Plasmid DNA PEGYLATION TUMOR
下载PDF
Evaluation of Cisplatin-Loaded Polymeric Micelles and Hybrid Nanoparticles Containing Poly(Ethylene Oxide)-Block-Poly(Methacrylic Acid) on Tumor Delivery
4
作者 Andang Miatmoko Kumi Kawano +1 位作者 Etsuo Yonemochi yoshiyuki hattori 《Pharmacology & Pharmacy》 2016年第1期1-8,共8页
Particulate carriers such as polymeric micelles (PMs) and liposomes have been investigated to increase drug accumulation in tumors and reduce distribution to healthy tissues. In this study, we prepared PM and hybrid n... Particulate carriers such as polymeric micelles (PMs) and liposomes have been investigated to increase drug accumulation in tumors and reduce distribution to healthy tissues. In this study, we prepared PM and hybrid nanoparticles (HNPs) with poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-b-PMAA) for loading cisplatin, and evaluated cisplatin release, cytotoxicity, and biodistribution in mice. PM composed of PEO-b-PMAA and HNPs composed of egg phosphatidylcholine (EPC)/PEO-b-PMAA at molar ratios of 50/2.8 (HNP-P5) and 50/50 (HNP-P50), respectively, were prepared by a nanoprecipitation method. The sizes of PM, HNP-P5, and HNP-P50 after inclusion of cisplatin were approximately 200, 100, and 55 nm, respectively, and their entrapment efficiencies were approximately 44% - 66%. In the drug-release study, HNP-P5 and HNP-P50 showed reduced release of cisplatin compared with PM. Regarding the cytotoxic assay, HNP-P5 exhibited lower cytotoxicity for mouse Lewis lung carcinoma (LLC) and mouse colon carcinoma Colon 26 cells than PM and HNP-P50. In terms of biodistribution, PM could significantly improve blood circulation and tumor accumulation after intravenous injection into Colon 26 tumor-bearing mice compared with free cisplatin, but HNP-P5 and HNP-P50 did not. EPC in HNPs might be destabilized in the circulation, although it could reduce release of cisplatin in in vitro experiments. This study suggested that polymeric micelles composed of PEO-b-PMAA are a better carrier for cisplatin than hybrid nanoparticles composed of PEO-b-PMAA and EPC. 展开更多
关键词 Polymeric Micelles Hybrid Nanoparticles CISPLATIN PEO-b-PMAA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部