Separators or electrolyte membranes are recognized as the key components to guarantee ion transport in rechargeable batteries.However,the ever-growing applications of the battery systems for diverse working environmen...Separators or electrolyte membranes are recognized as the key components to guarantee ion transport in rechargeable batteries.However,the ever-growing applications of the battery systems for diverse working environments bring new challenges,which require advanced battery membranes with high thermal stability,excellent mechanical strength,high voltage tolerance,etc.Therefore,it is highly desirable to design novel methods/concepts to solve the current challenges for battery membranes through understanding the mechanism of novel phenomena and electrochemical reactions in battery systems working under unconventional conditions.Recently,the new emerging Janus separators or electrolyte membranes with two or more distinct chemical/physical properties arising from their asymmetric structure and composition,are promising to address the above challenges via rational design of their targeted functionalities.To this end,in this review,we first briefly cover the current challenges of the traditional battery membrane for battery devices working in unconventional conditions.Then,the state-of-art developments of the rational design of Janus membranes to overcome the above challenges for diverse battery applications are summarized.Finally,we outline these latest developments,challenges,and future potential directions of the Janus membrane.Our review is aimed to provide basic guidance for developing functional separators or electrolyte membranes for advanced batteries.展开更多
Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalys...Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalysts containing varying mass percentages of MoS2 were obtained by a straightforward synthetic method.The results confirmed that MoS2,as a cocatalyst,markedly promoted the photogenerated charge separation efficiency and visible light-driven hydrogen production activity of ZIS6(λ>400 nm).Specifically,the as-prepared 0.5%MoS2/ZIS6 photocatalyst exhibited the highest photocatalytic hydrogen production rate(74.25μmol·h^-1),which was approximately 4.3 times higher than that of ZIS6(17.47μmol·h^-1).The excellent performance of the 0.5%MoS2/ZIS6 photocatalyst may be due to the fact that MoS2 has a low Fermi energy level and can thus enrich photogenerated electrons from ZIS6,and furthermore reduce H+derived from formic acid,to form hydrogen.The structure and morphology of the MoS2/ZIS6 photocatalysts and the reactive species were determined by X-ray diffraction,transmission electron microscopy,and field emission scanning electron microscopy,among others;a plausible mechanistic rationale is discussed based on the results.展开更多
Tyrosol is a pharmacologically active phenolic compound widely used in the medicine and chemical industries.Traditional methods of plant extraction are complicated and chemical synthesis of tyrosol is not commercially...Tyrosol is a pharmacologically active phenolic compound widely used in the medicine and chemical industries.Traditional methods of plant extraction are complicated and chemical synthesis of tyrosol is not commercially viable. In this study, a recombinant Escherichia coli strain was constructed by overexpressing the phenylpyruvate decarboxylase ARO10 from Saccharomyces cerevisiae, which could produce tyrosol from glucose. Furthermore,genes encoding key enzymes from the competing phenylalanine and tyrosine synthesis pathways and the repression protein TyrR were eliminated, and the resulting engineered strain generated 3.57 mmol·L^(-1) tyrosol from glucose. More significantly, codon optimization of ARO10 increased expression and tyrosol titer. Using the novel engineered strain expressing codon-optimized AR10 in shake-flask culture, 8.72 mmol·L^(-1) tyrosol was obtained after 48 h. Optimization of the induction conditions improved tyrosol production to 9.53 mmol·L^(-1)(1316.3 mg·L^(-1)). A higher titer of tyrosol was achieved by reconstruction of tyrosol synthetic pathway in E. coli.展开更多
基金supported by the Science and Technology Development Fund from Macao SAR(FDCT-0057/2019/A1,0092/2019/A2,and 0035/2019/AMJ)Startup grants(SRG2018-00140-IAPME)from the Research and Development Office at University of Macao+1 种基金National Natural Science Foundation of China(Grant no.21875040 and 21905051)Chongqing Key Laboratory fund of Soft-Matter Material Chemistry and Function Manufacturing(No.20200003).
文摘Separators or electrolyte membranes are recognized as the key components to guarantee ion transport in rechargeable batteries.However,the ever-growing applications of the battery systems for diverse working environments bring new challenges,which require advanced battery membranes with high thermal stability,excellent mechanical strength,high voltage tolerance,etc.Therefore,it is highly desirable to design novel methods/concepts to solve the current challenges for battery membranes through understanding the mechanism of novel phenomena and electrochemical reactions in battery systems working under unconventional conditions.Recently,the new emerging Janus separators or electrolyte membranes with two or more distinct chemical/physical properties arising from their asymmetric structure and composition,are promising to address the above challenges via rational design of their targeted functionalities.To this end,in this review,we first briefly cover the current challenges of the traditional battery membrane for battery devices working in unconventional conditions.Then,the state-of-art developments of the rational design of Janus membranes to overcome the above challenges for diverse battery applications are summarized.Finally,we outline these latest developments,challenges,and future potential directions of the Janus membrane.Our review is aimed to provide basic guidance for developing functional separators or electrolyte membranes for advanced batteries.
文摘Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalysts containing varying mass percentages of MoS2 were obtained by a straightforward synthetic method.The results confirmed that MoS2,as a cocatalyst,markedly promoted the photogenerated charge separation efficiency and visible light-driven hydrogen production activity of ZIS6(λ>400 nm).Specifically,the as-prepared 0.5%MoS2/ZIS6 photocatalyst exhibited the highest photocatalytic hydrogen production rate(74.25μmol·h^-1),which was approximately 4.3 times higher than that of ZIS6(17.47μmol·h^-1).The excellent performance of the 0.5%MoS2/ZIS6 photocatalyst may be due to the fact that MoS2 has a low Fermi energy level and can thus enrich photogenerated electrons from ZIS6,and furthermore reduce H+derived from formic acid,to form hydrogen.The structure and morphology of the MoS2/ZIS6 photocatalysts and the reactive species were determined by X-ray diffraction,transmission electron microscopy,and field emission scanning electron microscopy,among others;a plausible mechanistic rationale is discussed based on the results.
基金Supported by the Fundamental Research Funds for the Central Universities(JUSRP51611A,JUSRP51504)the Natural Science Foundation of Jiangsu Province(BK20171138)+1 种基金the National High Technology Research and Development Program of China(863 program,2013AA102101-5)the 111 Project(No.1112-06)
文摘Tyrosol is a pharmacologically active phenolic compound widely used in the medicine and chemical industries.Traditional methods of plant extraction are complicated and chemical synthesis of tyrosol is not commercially viable. In this study, a recombinant Escherichia coli strain was constructed by overexpressing the phenylpyruvate decarboxylase ARO10 from Saccharomyces cerevisiae, which could produce tyrosol from glucose. Furthermore,genes encoding key enzymes from the competing phenylalanine and tyrosine synthesis pathways and the repression protein TyrR were eliminated, and the resulting engineered strain generated 3.57 mmol·L^(-1) tyrosol from glucose. More significantly, codon optimization of ARO10 increased expression and tyrosol titer. Using the novel engineered strain expressing codon-optimized AR10 in shake-flask culture, 8.72 mmol·L^(-1) tyrosol was obtained after 48 h. Optimization of the induction conditions improved tyrosol production to 9.53 mmol·L^(-1)(1316.3 mg·L^(-1)). A higher titer of tyrosol was achieved by reconstruction of tyrosol synthetic pathway in E. coli.