期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
NiS_(2) nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries 被引量:3
1
作者 Mou-Ping Fan you-chen chen +6 位作者 Yuan-Mao chen Ze-Xi Huang Wen-Li Wu Pan Wang Xi Ke Shu-Hui Sun Zhi-Cong Shi 《Rare Metals》 SCIE EI CAS CSCD 2022年第4期1294-1303,共10页
Owing to the wide range and low cost of sodium resources,sodium-ion batteries(SIBs)have received extensive attention and research.Metal sulfides with high theoretical capacity are used as promising anode materials for... Owing to the wide range and low cost of sodium resources,sodium-ion batteries(SIBs)have received extensive attention and research.Metal sulfides with high theoretical capacity are used as promising anode materials for SIBs.This paper presents the electrochemical performance of the binder-free NiS_(2)nanosheet arrays grown on stainless steel(SS)substrate(NiS_(2)/SS)using an in situ growth and sulfidation strategy as anode for sodium ion batteries.Owing to the close connection between the NiS_(2)nanosheet arrays and the SS current collector,the NiS_(2)/SS anode demonstrates high rate capability with a reversible capacity of 492.5 mAh·g^(-1)at 5.0C rate.Such rate capability is superior to that of NiS_(2)nanoparticles(NiS_(2)/CMC:41.7 mAh·g^(-1)at 5.0C,NiS_(2)/PVDF:7.3 mAh·g^(-1)at 5.0C)and other Ni sulfides(100–450 mAh·g^(-1)at 5.0C)reported.Furthermore,the initial reversible specific capacity and Coulombic efficiency of NiS_(2)/SS are 786.5 mAh·g^(-1)and 81%,respec-tively,demonstrating a better sodium storage ability than those of most NiS_(2)anodes reported for SIBs.In addition,the amorphization and conversion mechanism during the sodiation/desodiation process of NiS_(2)are proposed after investigation by in situ X-ray diffraction(XRD)measurements of intermediate products at successive charge/discharge stages. 展开更多
关键词 Sulfide Sodium ion batteries Nanosheet arrays Binder-free Reaction mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部