A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the genera...A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the generated rock blocks. The recently developed numerical manifold method (NMM) has potential for modelling such a complete failure process. However, the NMM suffers one limitation, i.e., unexpected material domain area change occurs in rotation modelling. This problem can not be easily solved because the rigid body rotation is not represented explicitly in the NMM. The discontinuous deformation analysis (DDA) is specially de- veloped for modelling discrete block systems. The rotation- induced material area change in the DDA modelling can be avoided conveniently because the rigid body rotation is represented in an explicit form. In this paper, a transition technique is proposed and implemented to convert a NMMmodelling to a DDA modelling so as to simulate a complete rock failure process entirely by means of the two methods, in which the NMM is adopted to model the early fracturing as well as the transition from continua to discontinua, while the DDA is adopted to model the subsequent motion of the generated rock blocks. Such a numerical approach also im- proves the simulation efficiency greatly as compared with a complete NMM modelling approach. The fracturing of a rock slab with pre-existing non-persistent joints located on a slope crest and the induced rockfall process are simulated. The validity of the modelling transition from the NMM to the DDA is verified and the applicability of the proposed nu- merical approach is investigated.展开更多
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (20090101120057)the Scientific Research Fund of Zhejiang Provincial Education Department (Y200909163)
文摘A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the generated rock blocks. The recently developed numerical manifold method (NMM) has potential for modelling such a complete failure process. However, the NMM suffers one limitation, i.e., unexpected material domain area change occurs in rotation modelling. This problem can not be easily solved because the rigid body rotation is not represented explicitly in the NMM. The discontinuous deformation analysis (DDA) is specially de- veloped for modelling discrete block systems. The rotation- induced material area change in the DDA modelling can be avoided conveniently because the rigid body rotation is represented in an explicit form. In this paper, a transition technique is proposed and implemented to convert a NMMmodelling to a DDA modelling so as to simulate a complete rock failure process entirely by means of the two methods, in which the NMM is adopted to model the early fracturing as well as the transition from continua to discontinua, while the DDA is adopted to model the subsequent motion of the generated rock blocks. Such a numerical approach also im- proves the simulation efficiency greatly as compared with a complete NMM modelling approach. The fracturing of a rock slab with pre-existing non-persistent joints located on a slope crest and the induced rockfall process are simulated. The validity of the modelling transition from the NMM to the DDA is verified and the applicability of the proposed nu- merical approach is investigated.