A standing wave oscillator(SWO) is a perfect clock source which can be used to produce a high frequency clock signal with a low skew and high reliability. However, it is difficult to tune the SWO in a wide range of fr...A standing wave oscillator(SWO) is a perfect clock source which can be used to produce a high frequency clock signal with a low skew and high reliability. However, it is difficult to tune the SWO in a wide range of frequencies. We introduce a frequency tunable SWO which uses an inversion mode metal-oxide-semiconductor(IMOS) field-effect transistor as a varactor, and give the simulation results of the frequency tuning range and power dissipation. Based on the frequency tunable SWO, a new phase locked loop(PLL) architecture is presented. This PLL can be used not only as a clock source, but also as a clock distribution network to provide high quality clock signals. The PLL achieves an approximately 50% frequency tuning range when designed in Global Foundry 65 nm 1P9 M complementary metal-oxide-semiconductor(CMOS) technology, and can be used directly in a high performance multi-core microprocessor.展开更多
文摘A standing wave oscillator(SWO) is a perfect clock source which can be used to produce a high frequency clock signal with a low skew and high reliability. However, it is difficult to tune the SWO in a wide range of frequencies. We introduce a frequency tunable SWO which uses an inversion mode metal-oxide-semiconductor(IMOS) field-effect transistor as a varactor, and give the simulation results of the frequency tuning range and power dissipation. Based on the frequency tunable SWO, a new phase locked loop(PLL) architecture is presented. This PLL can be used not only as a clock source, but also as a clock distribution network to provide high quality clock signals. The PLL achieves an approximately 50% frequency tuning range when designed in Global Foundry 65 nm 1P9 M complementary metal-oxide-semiconductor(CMOS) technology, and can be used directly in a high performance multi-core microprocessor.