AIM: To investigate the effect of APOBEC3G mediated antiviral activity against hepatitis B virus (HBV) in cell cultures and replication competent HBV vector-based mouse model. METHODS: The mammalian hepatoma cells...AIM: To investigate the effect of APOBEC3G mediated antiviral activity against hepatitis B virus (HBV) in cell cultures and replication competent HBV vector-based mouse model. METHODS: The mammalian hepatoma cells Huh7 and HepG2 were cotransfected with various amounts of CMV-driven expression vector encoding APOBEC3G and replication competent 1.3 fold over-length HBV. Levels of HBsAg and HBeAg in the media of the transfected cells were determined by ELISA. The expression of HBcAg in transfected cells was detected by western blot. HBV DNA and RNA from intracellular core particles were examined by Northern and Southern blot analyses. To assess activity of the APOBEC3G in vivo, an HBV vector-based model was used in which APOBEC3G and the HBV vector were co-delivered via high-volume tail vein injection. Levels of HBsAg and HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by ELISA and quantitative PCR analysis respectively. RESULTS: There was a dose dependent decrease in the levels of intracellular core-associated HBV DNA and extracellular production of HBsAg and HBeAg. The levels of intracellular core-associated viral RNA also decreased, but the expression of HBcAg in transfected cells showed almost no change. Consistent with in vitro results, levels of HBsAg in the sera of mice were dramatically decreased. More than 1.5 log10 decrease in levels of serum HBV DNA and liver HBV RNA were observed in the APOBEC3G-treated groups compared with the control groups.CONCLUSION: These findings indicate that APOBEC3G could suppress HBV replication and antigen expression both in vivo and in vitro, promising an advance in treatment of HBV infection.展开更多
Objective: To clarify the relationship between loss of DPCA gene expression and pathogenesis of pancreato- biliary carcinoma. Methods: 75 slides of normal duct (20), hyperplasia (15), dysplasia (15), invasive carcinom...Objective: To clarify the relationship between loss of DPCA gene expression and pathogenesis of pancreato- biliary carcinoma. Methods: 75 slides of normal duct (20), hyperplasia (15), dysplasia (15), invasive carcinoma (25) from patients with pancreatic diseases including pancreatic carcinoma (25 patients), chronic pancreatitis (6), pancreas injury (2) and 71 slides of common bile duct (CBD) carcinoma (38), gallbladder carcinoma (18), hilar bile duct (HBD) carcinoma (15) from patients with primary biliary tract carcinoma were analyzed for the expression of DPC4 protein by im- munohistochemical staining. Results: All specimens from 20 cases of normal duct and 15 cases of hyperplasia showed marked expres- sion of DPC4 protein. The frequency of loss expres- sion of the DPC4 gene was 33 % in dysplasia, and 48% in invasive carcinoma. There was a significant statistical difference between byperplasia and dyspla- sia (P<0.01) and in dysplasia vs invasive carcinoma (P<0.05). The frequency of loss expression of the DPC4 gene was 47.3% in CBD carcinoma, 11% in gallbladder carcinoma, and 13% in HBD carcinoma. The frequency of loss expression of the DPCA gene was significantly different in CBD carcinoma vs gall- bladder carcinoma and HBD carcinoma (P<0.01). Conclusions: Inactivation of the DPC4 gene occurs late in the neoplastic progression of pancreatic carci- noma. The frequency of DPC4 gene alternation was different in various locations of biliary tract carcino- ma. In CBD carcinoma, this frequency is similar to that in pancreatic carcinoma, indicating their similar molecular alternations.展开更多
AIM: To investigate the effect of human apolipoprotein B mRNA-editing enzyme catalytic-polypeptide 3G (APOBEC3G) and its N-terminal or C-terminal cytosine deaminase domain-mediated antiviral activity against hepatitis...AIM: To investigate the effect of human apolipoprotein B mRNA-editing enzyme catalytic-polypeptide 3G (APOBEC3G) and its N-terminal or C-terminal cytosine deaminase domain-mediated antiviral activity against hepatitis B virus (HBV) in vitro and in vivo. METHODS: The mammalian hepatoma cells HepG2 and HuH7 were cotransfected with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vector and 1.3-fold-overlength HBV DNA as well as the linear monomeric HBV of genotype B and C. For in vivo study, an HBV vector-based mouse model was used in which APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vectors were co-delivered with 1.3-fold-overlength HBV DNA via high-volume tail vein injection. Levels of hepatitis B virus surface antigen (HBsAg) and hepatitis B virus e antigen (HBeAg) in the media of the transfected cells and in the sera of mice were determined by ELISA.The expression of hepatitis B virus core antigen (HBcAg) in the transfected cells was determined by Western blot analysis. Core-associated HBV DNA was examined by Southern blot analysis. Levels of HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by quantitative PCR and quantitative RT-PCR analysis, respectively. RESULTS: Human APOBEC3G exerted an anti-HBV activity in a dose-dependent manner in HepG2 cells, and comparable suppressive effects were observed on genotype B and C as that of genotype A. Interestingly, the N-terminal or C-terminal cytosine deaminase domain alone could also inhibit HBV replication in HepG2 cells as well as Huh7 cells. Consistent with in vitro results, the levels of HBsAg in the sera of mice were dramatically decreased, with more than 50 times decrease in the levels of serum HBV DNA and core-associated RNA in the liver of mice treated with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain as compared to the controls. CONCLUSION: Our findings provide probably the first evidence showing that APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain could suppress HBV replication in vitro and in vivo.展开更多
Previous studies have shown that expression of the interferon-sensitive gene (ISG)15 protease UBP43 is increased in the liver biopsy specimens of patients who do not respond to interferon (IFN)-α therapy. We hypo...Previous studies have shown that expression of the interferon-sensitive gene (ISG)15 protease UBP43 is increased in the liver biopsy specimens of patients who do not respond to interferon (IFN)-α therapy. We hypothesized that UBP43 might hinder the ability of IFN to inhibit HBV replication. In this study, we investigated whether vector-based siRNA promoted by HI (psiUBP43) could enhance IFN inhibiting HBV replication in cell culture. UBP43 was specifically silenced using shRNA. In HepG2.2.15 cells, the HBeAg and HBV DNA levels were significantly reduced by IFN after transfection of shRNA, imphicated that vector-based siRNA promoted by H1 (psiUBP43) could enhance IFN inhibiting HBV replication in cell culture. These data suggest that UBP43 modulates the anti-HBV type I IFN response, and is a possible therapeutic target for the treatment of HBV infection.展开更多
基金Supported by the National Natural Science Foundation of China, No. 30271170 and 30571646 the National Key Basic Research Program of China, No. 20014CB510008
文摘AIM: To investigate the effect of APOBEC3G mediated antiviral activity against hepatitis B virus (HBV) in cell cultures and replication competent HBV vector-based mouse model. METHODS: The mammalian hepatoma cells Huh7 and HepG2 were cotransfected with various amounts of CMV-driven expression vector encoding APOBEC3G and replication competent 1.3 fold over-length HBV. Levels of HBsAg and HBeAg in the media of the transfected cells were determined by ELISA. The expression of HBcAg in transfected cells was detected by western blot. HBV DNA and RNA from intracellular core particles were examined by Northern and Southern blot analyses. To assess activity of the APOBEC3G in vivo, an HBV vector-based model was used in which APOBEC3G and the HBV vector were co-delivered via high-volume tail vein injection. Levels of HBsAg and HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by ELISA and quantitative PCR analysis respectively. RESULTS: There was a dose dependent decrease in the levels of intracellular core-associated HBV DNA and extracellular production of HBsAg and HBeAg. The levels of intracellular core-associated viral RNA also decreased, but the expression of HBcAg in transfected cells showed almost no change. Consistent with in vitro results, levels of HBsAg in the sera of mice were dramatically decreased. More than 1.5 log10 decrease in levels of serum HBV DNA and liver HBV RNA were observed in the APOBEC3G-treated groups compared with the control groups.CONCLUSION: These findings indicate that APOBEC3G could suppress HBV replication and antigen expression both in vivo and in vitro, promising an advance in treatment of HBV infection.
文摘Objective: To clarify the relationship between loss of DPCA gene expression and pathogenesis of pancreato- biliary carcinoma. Methods: 75 slides of normal duct (20), hyperplasia (15), dysplasia (15), invasive carcinoma (25) from patients with pancreatic diseases including pancreatic carcinoma (25 patients), chronic pancreatitis (6), pancreas injury (2) and 71 slides of common bile duct (CBD) carcinoma (38), gallbladder carcinoma (18), hilar bile duct (HBD) carcinoma (15) from patients with primary biliary tract carcinoma were analyzed for the expression of DPC4 protein by im- munohistochemical staining. Results: All specimens from 20 cases of normal duct and 15 cases of hyperplasia showed marked expres- sion of DPC4 protein. The frequency of loss expres- sion of the DPC4 gene was 33 % in dysplasia, and 48% in invasive carcinoma. There was a significant statistical difference between byperplasia and dyspla- sia (P<0.01) and in dysplasia vs invasive carcinoma (P<0.05). The frequency of loss expression of the DPC4 gene was 47.3% in CBD carcinoma, 11% in gallbladder carcinoma, and 13% in HBD carcinoma. The frequency of loss expression of the DPCA gene was significantly different in CBD carcinoma vs gall- bladder carcinoma and HBD carcinoma (P<0.01). Conclusions: Inactivation of the DPC4 gene occurs late in the neoplastic progression of pancreatic carci- noma. The frequency of DPC4 gene alternation was different in various locations of biliary tract carcino- ma. In CBD carcinoma, this frequency is similar to that in pancreatic carcinoma, indicating their similar molecular alternations.
基金Supported by the National Natural Science Foundation of China, No. 30271170 and 30571646, and the National Key Basic Research Program of China, No. 20014CB510008 and 2005CB522900
文摘AIM: To investigate the effect of human apolipoprotein B mRNA-editing enzyme catalytic-polypeptide 3G (APOBEC3G) and its N-terminal or C-terminal cytosine deaminase domain-mediated antiviral activity against hepatitis B virus (HBV) in vitro and in vivo. METHODS: The mammalian hepatoma cells HepG2 and HuH7 were cotransfected with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vector and 1.3-fold-overlength HBV DNA as well as the linear monomeric HBV of genotype B and C. For in vivo study, an HBV vector-based mouse model was used in which APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vectors were co-delivered with 1.3-fold-overlength HBV DNA via high-volume tail vein injection. Levels of hepatitis B virus surface antigen (HBsAg) and hepatitis B virus e antigen (HBeAg) in the media of the transfected cells and in the sera of mice were determined by ELISA.The expression of hepatitis B virus core antigen (HBcAg) in the transfected cells was determined by Western blot analysis. Core-associated HBV DNA was examined by Southern blot analysis. Levels of HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by quantitative PCR and quantitative RT-PCR analysis, respectively. RESULTS: Human APOBEC3G exerted an anti-HBV activity in a dose-dependent manner in HepG2 cells, and comparable suppressive effects were observed on genotype B and C as that of genotype A. Interestingly, the N-terminal or C-terminal cytosine deaminase domain alone could also inhibit HBV replication in HepG2 cells as well as Huh7 cells. Consistent with in vitro results, the levels of HBsAg in the sera of mice were dramatically decreased, with more than 50 times decrease in the levels of serum HBV DNA and core-associated RNA in the liver of mice treated with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain as compared to the controls. CONCLUSION: Our findings provide probably the first evidence showing that APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain could suppress HBV replication in vitro and in vivo.
基金National Science Foundation of China (30271170National Hish Technology Research and Douelopment program of China (2006AA02Z128)
文摘Previous studies have shown that expression of the interferon-sensitive gene (ISG)15 protease UBP43 is increased in the liver biopsy specimens of patients who do not respond to interferon (IFN)-α therapy. We hypothesized that UBP43 might hinder the ability of IFN to inhibit HBV replication. In this study, we investigated whether vector-based siRNA promoted by HI (psiUBP43) could enhance IFN inhibiting HBV replication in cell culture. UBP43 was specifically silenced using shRNA. In HepG2.2.15 cells, the HBeAg and HBV DNA levels were significantly reduced by IFN after transfection of shRNA, imphicated that vector-based siRNA promoted by H1 (psiUBP43) could enhance IFN inhibiting HBV replication in cell culture. These data suggest that UBP43 modulates the anti-HBV type I IFN response, and is a possible therapeutic target for the treatment of HBV infection.