We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy spl...We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2).展开更多
Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) a...Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future.展开更多
After the discovery of the ARECh_(2)(A=alkali or monovalent ions,RE=rare-earth,Ch=chalcogen)triangular lattice quantum spin liquid(QSL)family,a series of its oxide,sulfide,and selenide counterparts has been consistent...After the discovery of the ARECh_(2)(A=alkali or monovalent ions,RE=rare-earth,Ch=chalcogen)triangular lattice quantum spin liquid(QSL)family,a series of its oxide,sulfide,and selenide counterparts has been consistently reported and extensively investigated.While KErTe_(2) represents the initial synthesized telluride member,preserving its triangular spin lattice,it was anticipated that the substantial tellurium ions could impart more pronounced magnetic attributes and electronic structures to this material class.This study delves into the magnetism of KErTe_(2) at finite temperatures through magnetization and electron spin resonance(ESR)measurements.Based on the angular momentum J after spin-orbit coupling(SOC)and symmetry analysis,we obtain the magnetic effective Hamiltonian to describe the magnetism of Er^(3+)in R3m space group.Applying the mean-field approximation to the Hamiltonian,we can simulate the magnetization and magnetic heat capacity of KErTe_(2) in paramagnetic state and determine the crystalline electric field(CEF)parameters and partial exchange interactions.The relatively narrow energy gaps between the CEF ground state and excited states exert a significant influence on the magnetism.For example,small CEF excitations can result in a significant broadening of the ESR linewidth at 2 K.For the fitted exchange interactions,although the values are small,given a large angular momentum J=15/2 after SOC,they still have a noticeable effect at finite temperatures.Notably,the heat capacity data under different magnetic fields along the𝑐axis direction also roughly match our calculated results,further validating the reliability of our analytical approach.These derived parameters serve as crucial tools for future investigations into the ground state magnetism of KErTe_(2).The findings presented herein lay a foundation for exploration of the intricate magnetism within the triangular-lattice delafossite family.展开更多
Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make i...Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make it an ideal candidate for the study of Weyl fermions and applications in quantum computation,thermoelectric devices,and photodetection.For further basic physics studies and potential applications,large-size and high-quality Ta As films are urgently needed.However,it is difficult to grow As-stoichiometry Ta As films due to the volatilization of As during the growth.To solve this problem,we attempted to grow Ta As films on different substrates using targets with different As stoichiometric ratios via pulsed laser deposition(PLD).In this work,we found that partial As ions of the Ga As substrate are likely to diffuse into the Ta As films during growth,which was preliminarily confirmed by structural characterization,surface topography and composition analysis.As a result,the As content in the Ta As film was improved and the Ta As phase was achieved.Our work presents an effective method for the fabrication of Ta As films using PLD,enabling possible use of the Weyl semimetal film for functional devices.展开更多
Nonlinear optical properties are investigated using the static and time-resolved second harmonic generation in the topological material molybdenum phosphide(Mo P) with three-component fermions.Giant second harmonic ge...Nonlinear optical properties are investigated using the static and time-resolved second harmonic generation in the topological material molybdenum phosphide(Mo P) with three-component fermions.Giant second harmonic generation signals are detected and the derived χ^((2)) value is larger than that of the typical electro–optic material.Upon optical excitation,no photoinduced change of the symmetry is detected in MoP,which is quite different from previous observations in several other topological materials.展开更多
The electronic evolution of Mott insulators into exotic correlated phases remains puzzling,because of electron interaction and inhomogeneity.Introduction of individual imperfections in Mott insulators could help captu...The electronic evolution of Mott insulators into exotic correlated phases remains puzzling,because of electron interaction and inhomogeneity.Introduction of individual imperfections in Mott insulators could help capture the main mechanism and serve as a basis to understand the evolution.Here we utilize scanning tunneling microscopy to probe the atomic scale electronic structure of the spin-orbit-coupling assisted Mott insulator Sr_(3)Ir_(2)O_(7).It is found that the tunneling spectra exhibit a homogeneous Mott gap in defect-free regions,but near the oxygen vacancy in the rotated Ir O_(2)plane the local Mott gap size is significantly enhanced.We attribute the enhanced gap to the locally reduced hopping integral between the 5d electrons of neighboring Ir sites via the bridging planar oxygen p orbitals.Such bridging defects have a dramatic influence on local bandwidth,thus provide a new way to manipulate the strength of Mottness in a Mott insulator.展开更多
Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P...Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P 6/mmm,and CsV_(6)Sb_(6)with space group R3m,as the parent compounds.Totally 4158 materials were obtained through element substitutions,and these materials were then calculated via density functional theory in high-throughput mode.Afterwards,48 materials were identified with high thermodynamic stability(E_(hull)<5 meV/atom).Furthermore,we compared the thermodynamic stability of three different phases with the same elemental composition and predicted some competing phases that may arise during material synthesis.Finally,by calculating the electronic structures of these materials,we attempted to identify patterns in the electronic structure variations as the elements change.This study provides guidance for discovering promising AM_(3)X_(5)/AM_(6)X_(6)Kagome materials from a vast phase space.展开更多
Theories and experiments on dirty superconductors are complex but important in terms of both theoretical fundamentals and practical applications.These activities are even more challenging when magnetic fields are pres...Theories and experiments on dirty superconductors are complex but important in terms of both theoretical fundamentals and practical applications.These activities are even more challenging when magnetic fields are present because the field distribution,electron density of states,and superconducting pairing potentials become nonuniform.Here,we present tunneling microspectroscopic experiments on NbC single crystals and demonstrate that NbC is a homogeneous dirty superconductor.When applying magnetic fields to the samples,we found that the zero-energy local density of states and the pairing energy gap followed the explicit scaling relation proposed by de Gennes for homogeneous dirty superconductors in high magnetic fields.More significantly,our experimental findings indicate that the validity of the scaling relation extends to magnetic field strengths far below the upper critical field,calling for a new nonperturbative understanding of this fundamental property in dirty superconductors.On the practical side,we used the observed scaling relation to derive a simple and straightforward experimental scheme for estimating the superconducting coherence length of a dirty superconductor in magnetic fields.展开更多
Ultrafast optical spectroscopy of a single crystal of a Dirac semimetal Cd_3As_(2 )is carried out.An acoustic phonon(AP)mode with central frequency f=0.037 THz(i.e.,1.23 cm^(-1)or 0.153 meV)is unambiguously ge...Ultrafast optical spectroscopy of a single crystal of a Dirac semimetal Cd_3As_(2 )is carried out.An acoustic phonon(AP)mode with central frequency f=0.037 THz(i.e.,1.23 cm^(-1)or 0.153 meV)is unambiguously generated and detected,which we attribute to laser-induced thermal strain.An AP chirping(i.e.,variation of the phonon frequency)is clearly detected,which is ascribed to heat capacity variation with time.By comparing our experimental results and the theoretical model,we obtain a chirping time constant,which is 31.2 ps at 6 K and 19.8 ps at 300 K,respectively.Significantly,we identify an asymmetry in the AP frequency domain peak and find that it is caused by the chirping,instead of a Fano resonance.Moreover,we experimentally demonstrate that the central frequency of AP is extremely stable with varying laser fluence,as well as temperature,which endows Cd_3As_2application potentials in thermoelectric devices.展开更多
Magnetic topological materials have attracted much attention due to the correlation between topology and magnetism.Recent studies suggest that EuCd_(2)As_(2) is an antiferromagnetic topological material.Here by carryi...Magnetic topological materials have attracted much attention due to the correlation between topology and magnetism.Recent studies suggest that EuCd_(2)As_(2) is an antiferromagnetic topological material.Here by carrying out thorough magnetic,electrical and thermodynamic property measurements,we discover a long-time relaxation of the magnetic susceptibility in EuCd_(2)As_(2).The(001)in-plane magnetic susceptibility at 5 K is found to continuously increase up to∼10%over the time of∼14 hours.The magnetic relaxation is anisotropic and strongly depends on the temperature and the applied magnetic field.These results will stimulate further theoretical and experimental studies to understand the origin of the relaxation process and its effect on the electronic structure and physical properties of the magnetic topological materials.展开更多
We report on low-temperature electron transport properties of MnSb2Te4,a candidate of ferrimagnetic Weyl semimetal.Long-range magnetic order is manifested as a nearly square-shaped hysteresis loop in the anomalous Hal...We report on low-temperature electron transport properties of MnSb2Te4,a candidate of ferrimagnetic Weyl semimetal.Long-range magnetic order is manifested as a nearly square-shaped hysteresis loop in the anomalous Hall resistance,as well as sharp jumps in the magnetoresistance.At temperatures below 4K,a lnT-type upturn appears in the temperature dependence of longitudinal resistance,which can be attributed to the electron-electron interaction(EEI),since the weak localization can be excluded by the temperature dependence of magnetoresistance.Although the anomalous Hall resistance exhibits a similar lnT-type upturn in the same temperature range,such correction is absent in the anomalous Hall conductivity.Our work demonstrates that MnSb2Te4 microflakes provide an ideal system to test the theory of EEI correction to the anomalous Hall effect.展开更多
The search for quantum spin liquid(QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hostin...The search for quantum spin liquid(QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hosting QSL ground state. Owning to their geometrically frustrated structures, Kagome materials are ideal systems to realize QSL. We synthesize the kagome structured material claringbullite(Cu_4(OH)_6FCl) and then replace inter-layer Cu with Zn to form Cu_3Zn(OH)_6FCl. Comprehensive measurements reveal that doping Zn^(2+) ions transforms magnetically ordered Cu_4(OH)_6FCl into a non-magnetic QSL candidate Cu_3Zn(OH)_6FCl. Therefore,the successful syntheses of Cu_4(OH)_6FCl and Cu_3Zn(OH)_6FCl provide not only a new platform for the study of QSL but also a novel pathway of investigating the transition between QSL and magnetically ordered systems.展开更多
Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capac...Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capacity measurements.CeCo_(2)Ga_(8) is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point.Upon compressing the c axis,parallel to the Ce-Ce chain,the onset of coherent Kondo effect is enhanced.In contrast,the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along a or b axis.These results suggest that a tensile intra-chain strain(ε_(c)>0)pushes CeCo_(2)Ga_(8) closer to the quantum critical point,while a compressive intra-chain strain(ε_(c)<0)likely causes departure.Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress,and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.展开更多
Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interacti...Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW^0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.展开更多
We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate...We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN^7K. A large Sommerfeld coefficient of 329.23 m J·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k =(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μBat 4K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB.PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.展开更多
Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2...Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2),which is the first member of telluride in the family.Compared to its cousins of oxides,sulfides and selenides,KErTe_(2) retains the high symmetry of R3m and Er3+ions still sit on a perfect triangular lattice.The separation between adjacent magnetic layers is expectedly increased,which further enhances the two dimensionality of the spin system.Specific heat and magnetic susceptibility measurements on KErTe_(2) single crystals reveal no structural and magnetic transition down to 1.8 K.Most interestingly,the absorption spectrum shows that the charge gap of KErTe_(2) is roughly 0.93±0.35 eV,which is the smallest among all the reported members in the family.This immediately invokes the interest towards metallization even superconductivity using the compound.展开更多
Discovery of a new superconductor with distinct crystal structure and chemistry often provides great opportunity for further expanding superconductor material base,and also leads to better understanding of superconduc...Discovery of a new superconductor with distinct crystal structure and chemistry often provides great opportunity for further expanding superconductor material base,and also leads to better understanding of superconductivity mechanisms.Here,we report the discovery of superconductivity in a new intermetallic oxide Hf_(3)Pt_Ge_(2)O synthesized through a solid-state reaction.The Hf_(3)Pt_Ge_(2)O crystallizes in a cubic structure(space group Fm-3 m)with a lattice constant of a=1.241 nm,whose stoichiometry and atomic structure are determined by electron microscopy and x-ray diffraction techniques.The superconductivity at 4.1 K and type-II superconducting nature are evidenced by the electrical resistivity,magnetic susceptibility,and specific heat measurements.The intermetallic oxide Hf_(3)Pt_Ge_(2)O system demonstrates an intriguing structural feature that foreign oxygen atoms can be accommodated in the interstitial sites of the ternary intermetallic framework.We also successfully synthesized a series of Hf_(3)Pt_Ge_(2)O1+δ(-0.25≤δ≤0.5),and found theδ-dependent superconducting transition temperature Tc.The atomic structure and the electronic structure are also substantiated by first-principles calculations.Our results present an entirely new family of superconductors with distinct structural and chemical characteristics,and could attract research interest in further finding new superconductors and exploring novel physics pertaining to the 5 d-electron in these intermetallic compound systems.展开更多
With Zn substitution to the three-dimensional antiferromagnetically ordered barlowite Cu_(4)(OH)_(6)FBr,Cu_(3)Zn(OH)_(6)FBr shows no magnetic phase transition down to 50 mK,and the system is suggested to be a two-dime...With Zn substitution to the three-dimensional antiferromagnetically ordered barlowite Cu_(4)(OH)_(6)FBr,Cu_(3)Zn(OH)_(6)FBr shows no magnetic phase transition down to 50 mK,and the system is suggested to be a two-dimensional kagomé quantum spin liquid[Chin.Phys.Lett.34077502(2017)].A key issue to identify such phase diagram is the exact chemical formula of the substituted compound.With Cu L-edge x-ray absorption spectrum(XAS)combined with the MultiX XAS calculations,we evaluate the Cu concentration in a nominal Cu_(3)Zn(OH)_(6)FBr sample.Our results show that although the Cu concentration is 2.80,close to the expected value,there is 34%residual Cu occupation in intersite layers between kagomé layers.Thus the Zn substitution of the intersite layers is not complete,and likely it intrudes the kagomé layers.展开更多
We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet,Cu_(3)Zn(OH)_(6)FBr.The specific heat exhibits a T1.7 dependence at low temperatures and a shoulder-like featur...We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet,Cu_(3)Zn(OH)_(6)FBr.The specific heat exhibits a T1.7 dependence at low temperatures and a shoulder-like feature above it.We construct a microscopic lattice model of Z_(2) quantum spin liquid and perform large-scale quantum Monte Carlo simulations to show that the above behaviors come from the contributions from gapped anyons and magnetic impurities.Surprisingly,we find the entropy associated with the shoulder decreases quickly with grain size d,although the system is paramagnetic to the lowest temperature.While this can be simply explained by a core-shell picture in that the contribution from the interior state disappears near the surface,the 5.9-nm shell width precludes any trivial explanations.Such a large length scale signifies the coherence length of the nonlocality of the quantum entangled excitations in quantum spin liquid candidate,similar to Pippard’s coherence length in superconductors.Our approach therefore offers a new experimental probe of the intangible quantum state of matter with topological order.展开更多
We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrang...We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrange magnetic order and the orthorhombic nuclear structure in the x=0 sample can persist up to x=0.23 and 0.43,respectively.The temperature dependence of the zero-field μSR spectra provides two characteristic temperatures,TA0 and Tλ,which are associated with the initial drop close to zero time and the long-time exponential decay of the muon relaxation,respectively.Comparison between TA0 and TM from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to x=0.82.On the other hand,the doping level where Tλ becomes zero is about 0.66,which is much higher than threshold of the long-range order,i.e.,~0.4.Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above x=0.66 with the perfect kagome planes.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11888101 and U1832202)the Chinese Academy of Sciences (Grant Nos.QYZDB-SSWSLH043,XDB28000000,and XDB33000000)+1 种基金the K.C.Wong Education Foundation (Grant No.GJTD-2018-01)the Informatization Plan of Chinese Academy of Sciences (Grant No.CAS-WX2021SF-0102)。
文摘We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2).
基金Project supported by the Ministry of Science and Technology of China (Grant No. 2022YFA1403800)the National Natural Science Foundation of China (Grant Nos. U2032204,12188101, and U22A6005)+2 种基金the Chinese Academy of Sciences (Grant No. XDB33000000)the Synergetic Extreme Condition User Facility (SECUF)the Center for Materials Genome。
文摘Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future.
基金supported by the National Science Foundation of China(Grant Nos.U1932215 and 12274186)the National Key Research and Development Program of China(Grant No.2022YFA1402704)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33010100)the Synergetic Extreme Condition User Facility(SECUF)。
文摘After the discovery of the ARECh_(2)(A=alkali or monovalent ions,RE=rare-earth,Ch=chalcogen)triangular lattice quantum spin liquid(QSL)family,a series of its oxide,sulfide,and selenide counterparts has been consistently reported and extensively investigated.While KErTe_(2) represents the initial synthesized telluride member,preserving its triangular spin lattice,it was anticipated that the substantial tellurium ions could impart more pronounced magnetic attributes and electronic structures to this material class.This study delves into the magnetism of KErTe_(2) at finite temperatures through magnetization and electron spin resonance(ESR)measurements.Based on the angular momentum J after spin-orbit coupling(SOC)and symmetry analysis,we obtain the magnetic effective Hamiltonian to describe the magnetism of Er^(3+)in R3m space group.Applying the mean-field approximation to the Hamiltonian,we can simulate the magnetization and magnetic heat capacity of KErTe_(2) in paramagnetic state and determine the crystalline electric field(CEF)parameters and partial exchange interactions.The relatively narrow energy gaps between the CEF ground state and excited states exert a significant influence on the magnetism.For example,small CEF excitations can result in a significant broadening of the ESR linewidth at 2 K.For the fitted exchange interactions,although the values are small,given a large angular momentum J=15/2 after SOC,they still have a noticeable effect at finite temperatures.Notably,the heat capacity data under different magnetic fields along the𝑐axis direction also roughly match our calculated results,further validating the reliability of our analytical approach.These derived parameters serve as crucial tools for future investigations into the ground state magnetism of KErTe_(2).The findings presented herein lay a foundation for exploration of the intricate magnetism within the triangular-lattice delafossite family.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA0718700)the National Natural Science Foundation of China(Grant No.12174347)+1 种基金the Synergetic Extreme Condition User Facility(SECUF)the Center for Materials Genome。
文摘Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make it an ideal candidate for the study of Weyl fermions and applications in quantum computation,thermoelectric devices,and photodetection.For further basic physics studies and potential applications,large-size and high-quality Ta As films are urgently needed.However,it is difficult to grow As-stoichiometry Ta As films due to the volatilization of As during the growth.To solve this problem,we attempted to grow Ta As films on different substrates using targets with different As stoichiometric ratios via pulsed laser deposition(PLD).In this work,we found that partial As ions of the Ga As substrate are likely to diffuse into the Ta As films during growth,which was preliminarily confirmed by structural characterization,surface topography and composition analysis.As a result,the As content in the Ta As film was improved and the Ta As phase was achieved.Our work presents an effective method for the fabrication of Ta As films using PLD,enabling possible use of the Weyl semimetal film for functional devices.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403000)the National Natural Science Foundation of China(Grant Nos.11974070,92365102,11974306,12034017,11734006,and 11774401)。
文摘Nonlinear optical properties are investigated using the static and time-resolved second harmonic generation in the topological material molybdenum phosphide(Mo P) with three-component fermions.Giant second harmonic generation signals are detected and the derived χ^((2)) value is larger than that of the typical electro–optic material.Upon optical excitation,no photoinduced change of the symmetry is detected in MoP,which is quite different from previous observations in several other topological materials.
基金the National Key R&D Program of China(Grant No.2017YFA0302900)the Basic Science Center Project of National Natural Science Foundation of China(Grant No.51788104)+4 种基金supported in part by the Beijing Advanced Innovation Center for Future Chip(ICFC)Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physicssupported by the National Natural Science Foundation of China(Grant No.12074424)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China。
文摘The electronic evolution of Mott insulators into exotic correlated phases remains puzzling,because of electron interaction and inhomogeneity.Introduction of individual imperfections in Mott insulators could help capture the main mechanism and serve as a basis to understand the evolution.Here we utilize scanning tunneling microscopy to probe the atomic scale electronic structure of the spin-orbit-coupling assisted Mott insulator Sr_(3)Ir_(2)O_(7).It is found that the tunneling spectra exhibit a homogeneous Mott gap in defect-free regions,but near the oxygen vacancy in the rotated Ir O_(2)plane the local Mott gap size is significantly enhanced.We attribute the enhanced gap to the locally reduced hopping integral between the 5d electrons of neighboring Ir sites via the bridging planar oxygen p orbitals.Such bridging defects have a dramatic influence on local bandwidth,thus provide a new way to manipulate the strength of Mottness in a Mott insulator.
基金supported by the Chinese Academy of Sciences(Grant Nos.CASWX2023SF-0101,ZDBS-LY-SLH007 and XDB33020000)the National Key R&D Program of China(Grant No.2021YFA0718700)。
文摘Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P 6/mmm,and CsV_(6)Sb_(6)with space group R3m,as the parent compounds.Totally 4158 materials were obtained through element substitutions,and these materials were then calculated via density functional theory in high-throughput mode.Afterwards,48 materials were identified with high thermodynamic stability(E_(hull)<5 meV/atom).Furthermore,we compared the thermodynamic stability of three different phases with the same elemental composition and predicted some competing phases that may arise during material synthesis.Finally,by calculating the electronic structures of these materials,we attempted to identify patterns in the electronic structure variations as the elements change.This study provides guidance for discovering promising AM_(3)X_(5)/AM_(6)X_(6)Kagome materials from a vast phase space.
基金supported by the National Key Research and Development Program of the Ministry of Science and Technology of China(Grant Nos.2017YFA0302903,2016YFA0300602,2016YFA0300604,and 2016YFJC010282)the National Natural Science Foundation of China(Grant Nos.11227903,12004416,and U2032204)+3 种基金the Beijing Municipal Science and Technology Commission,China(Grant Nos.Z181100004218007 and Z191100007219011)the National Basic Research Program of China(Grant No.2015CB921304)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB07000000,XDB28000000 and XDB33000000)supported by the US Department of Energy(Basic Energy Sciences Grant No.DE-FG02-99ER45747).
文摘Theories and experiments on dirty superconductors are complex but important in terms of both theoretical fundamentals and practical applications.These activities are even more challenging when magnetic fields are present because the field distribution,electron density of states,and superconducting pairing potentials become nonuniform.Here,we present tunneling microspectroscopic experiments on NbC single crystals and demonstrate that NbC is a homogeneous dirty superconductor.When applying magnetic fields to the samples,we found that the zero-energy local density of states and the pairing energy gap followed the explicit scaling relation proposed by de Gennes for homogeneous dirty superconductors in high magnetic fields.More significantly,our experimental findings indicate that the validity of the scaling relation extends to magnetic field strengths far below the upper critical field,calling for a new nonperturbative understanding of this fundamental property in dirty superconductors.On the practical side,we used the observed scaling relation to derive a simple and straightforward experimental scheme for estimating the superconducting coherence length of a dirty superconductor in magnetic fields.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2017YFA0303603,2016YFA0300303,2017YFA0302901 and 2016YFA0300604the National Natural Science Foundation of China under Grant Nos11774408,11574383 and 11774399+1 种基金the External Cooperation Program of Chinese Academy of Sciences under Grant No GJHZ1826the Interdisciplinary Innovation Team of Chinese Academy of Sciences
文摘Ultrafast optical spectroscopy of a single crystal of a Dirac semimetal Cd_3As_(2 )is carried out.An acoustic phonon(AP)mode with central frequency f=0.037 THz(i.e.,1.23 cm^(-1)or 0.153 meV)is unambiguously generated and detected,which we attribute to laser-induced thermal strain.An AP chirping(i.e.,variation of the phonon frequency)is clearly detected,which is ascribed to heat capacity variation with time.By comparing our experimental results and the theoretical model,we obtain a chirping time constant,which is 31.2 ps at 6 K and 19.8 ps at 300 K,respectively.Significantly,we identify an asymmetry in the AP frequency domain peak and find that it is caused by the chirping,instead of a Fano resonance.Moreover,we experimentally demonstrate that the central frequency of AP is extremely stable with varying laser fluence,as well as temperature,which endows Cd_3As_2application potentials in thermoelectric devices.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300600 and 2018YFA0305600)the National Natural Science Foundation of China(Grant No.11974404)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB33000000)the Youth Innovation Promotion Association of CAS(Grant No.2017013).
文摘Magnetic topological materials have attracted much attention due to the correlation between topology and magnetism.Recent studies suggest that EuCd_(2)As_(2) is an antiferromagnetic topological material.Here by carrying out thorough magnetic,electrical and thermodynamic property measurements,we discover a long-time relaxation of the magnetic susceptibility in EuCd_(2)As_(2).The(001)in-plane magnetic susceptibility at 5 K is found to continuously increase up to∼10%over the time of∼14 hours.The magnetic relaxation is anisotropic and strongly depends on the temperature and the applied magnetic field.These results will stimulate further theoretical and experimental studies to understand the origin of the relaxation process and its effect on the electronic structure and physical properties of the magnetic topological materials.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11961141011 and 61425015the National Key Research and Development Program under Grant No.2016YFA0300600the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDB28000000.
文摘We report on low-temperature electron transport properties of MnSb2Te4,a candidate of ferrimagnetic Weyl semimetal.Long-range magnetic order is manifested as a nearly square-shaped hysteresis loop in the anomalous Hall resistance,as well as sharp jumps in the magnetoresistance.At temperatures below 4K,a lnT-type upturn appears in the temperature dependence of longitudinal resistance,which can be attributed to the electron-electron interaction(EEI),since the weak localization can be excluded by the temperature dependence of magnetoresistance.Although the anomalous Hall resistance exhibits a similar lnT-type upturn in the same temperature range,such correction is absent in the anomalous Hall conductivity.Our work demonstrates that MnSb2Te4 microflakes provide an ideal system to test the theory of EEI correction to the anomalous Hall effect.
基金Supported by the National Key Research and Development Program(2016YFA0300502,2017YFA0302901,2016YFA0300604 and 2016YFA0300501)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB28000000,XDB07020100and QYZDB-SSW-SLH043)the National Natural Science Foundation of China under Grant Nos 11421092,11574359,11674370,11774399,11474330 and U1732154
文摘The search for quantum spin liquid(QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hosting QSL ground state. Owning to their geometrically frustrated structures, Kagome materials are ideal systems to realize QSL. We synthesize the kagome structured material claringbullite(Cu_4(OH)_6FCl) and then replace inter-layer Cu with Zn to form Cu_3Zn(OH)_6FCl. Comprehensive measurements reveal that doping Zn^(2+) ions transforms magnetically ordered Cu_4(OH)_6FCl into a non-magnetic QSL candidate Cu_3Zn(OH)_6FCl. Therefore,the successful syntheses of Cu_4(OH)_6FCl and Cu_3Zn(OH)_6FCl provide not only a new platform for the study of QSL but also a novel pathway of investigating the transition between QSL and magnetically ordered systems.
文摘Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capacity measurements.CeCo_(2)Ga_(8) is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point.Upon compressing the c axis,parallel to the Ce-Ce chain,the onset of coherent Kondo effect is enhanced.In contrast,the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along a or b axis.These results suggest that a tensile intra-chain strain(ε_(c)>0)pushes CeCo_(2)Ga_(8) closer to the quantum critical point,while a compressive intra-chain strain(ε_(c)<0)likely causes departure.Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress,and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2013CBA01603,2016YFA0300600,and 2016YFA0300903)the National Natural Science Foundation of China(Grant Nos.11574005,11774009,11222436,and 11574283)the National Postdoctoral Program for Innovative Talents of China(Grant No.BX201700012)funded by China Postdoctoral Science Foundation.
文摘Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW^0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.
基金National Key Research and Development Program of China(Grant Nos.2017YFA0302901 and 2016YFA0300604)the National Natural Science Foundation of China(Grant No.11774399)+2 种基金Beijing Natural Science Foundation,China(Grant No.Z180008)the K.C.Wong Education Foundation(Grant No.GJTD-2018-01)the DAAD-PPP programme,and the joint German-Sino HGF-OCPC Postdoc Programme.
文摘We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN^7K. A large Sommerfeld coefficient of 329.23 m J·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k =(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μBat 4K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB.PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504)the National Natural Science Foundation of China (Grant Nos. U1932215 and 11774419)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDB33010100)Postdoctoral Science Foundation of China (Grant No. 2020M670500)the support from Users with Excellence Program of Hefei Science Center and High Magnetic Field Facility,CAS
文摘Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2),which is the first member of telluride in the family.Compared to its cousins of oxides,sulfides and selenides,KErTe_(2) retains the high symmetry of R3m and Er3+ions still sit on a perfect triangular lattice.The separation between adjacent magnetic layers is expectedly increased,which further enhances the two dimensionality of the spin system.Specific heat and magnetic susceptibility measurements on KErTe_(2) single crystals reveal no structural and magnetic transition down to 1.8 K.Most interestingly,the absorption spectrum shows that the charge gap of KErTe_(2) is roughly 0.93±0.35 eV,which is the smallest among all the reported members in the family.This immediately invokes the interest towards metallization even superconductivity using the compound.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0300303,2017YFA0504703,2017YFA03029042017YFA0303000)+4 种基金the National Basic Research Program of China(Grant No.2015CB921304)the National Natural Science Foundation of China(Grant Nos.11774391,11774403,and 11804381)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000and XDB07020000)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.ZDKYYQ20170002)the China Postdoctoral Science Foundation(Grant No.BX20180351)。
文摘Discovery of a new superconductor with distinct crystal structure and chemistry often provides great opportunity for further expanding superconductor material base,and also leads to better understanding of superconductivity mechanisms.Here,we report the discovery of superconductivity in a new intermetallic oxide Hf_(3)Pt_Ge_(2)O synthesized through a solid-state reaction.The Hf_(3)Pt_Ge_(2)O crystallizes in a cubic structure(space group Fm-3 m)with a lattice constant of a=1.241 nm,whose stoichiometry and atomic structure are determined by electron microscopy and x-ray diffraction techniques.The superconductivity at 4.1 K and type-II superconducting nature are evidenced by the electrical resistivity,magnetic susceptibility,and specific heat measurements.The intermetallic oxide Hf_(3)Pt_Ge_(2)O system demonstrates an intriguing structural feature that foreign oxygen atoms can be accommodated in the interstitial sites of the ternary intermetallic framework.We also successfully synthesized a series of Hf_(3)Pt_Ge_(2)O1+δ(-0.25≤δ≤0.5),and found theδ-dependent superconducting transition temperature Tc.The atomic structure and the electronic structure are also substantiated by first-principles calculations.Our results present an entirely new family of superconductors with distinct structural and chemical characteristics,and could attract research interest in further finding new superconductors and exploring novel physics pertaining to the 5 d-electron in these intermetallic compound systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934017 and 11774399)the Key Research and Development Program of China(Grant No.2016YFA0401000)+1 种基金the Chinese Academy of Sciences(Grant No.112111KYSB20170059)the K.C.Wong Education Foundation(Grant No.GJTD-2018-01)。
文摘With Zn substitution to the three-dimensional antiferromagnetically ordered barlowite Cu_(4)(OH)_(6)FBr,Cu_(3)Zn(OH)_(6)FBr shows no magnetic phase transition down to 50 mK,and the system is suggested to be a two-dimensional kagomé quantum spin liquid[Chin.Phys.Lett.34077502(2017)].A key issue to identify such phase diagram is the exact chemical formula of the substituted compound.With Cu L-edge x-ray absorption spectrum(XAS)combined with the MultiX XAS calculations,we evaluate the Cu concentration in a nominal Cu_(3)Zn(OH)_(6)FBr sample.Our results show that although the Cu concentration is 2.80,close to the expected value,there is 34%residual Cu occupation in intersite layers between kagomé layers.Thus the Zn substitution of the intersite layers is not complete,and likely it intrudes the kagomé layers.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0302900,2016YFA0300500,and2020YFA0406003)the National Natural Science Foundation of China(Grant Nos.11874401,11674406,11961160699,11774399+4 种基金11804383)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB33000000,XDB28000000,XDB25000000XDB07020000)the K.C.Wong Education Foundation(Grant Nos.GJTD-2020-01 and GJTD-2018-01)the Beijing Natural Science Foundation(Grant No.Z180008)。
文摘We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet,Cu_(3)Zn(OH)_(6)FBr.The specific heat exhibits a T1.7 dependence at low temperatures and a shoulder-like feature above it.We construct a microscopic lattice model of Z_(2) quantum spin liquid and perform large-scale quantum Monte Carlo simulations to show that the above behaviors come from the contributions from gapped anyons and magnetic impurities.Surprisingly,we find the entropy associated with the shoulder decreases quickly with grain size d,although the system is paramagnetic to the lowest temperature.While this can be simply explained by a core-shell picture in that the contribution from the interior state disappears near the surface,the 5.9-nm shell width precludes any trivial explanations.Such a large length scale signifies the coherence length of the nonlocality of the quantum entangled excitations in quantum spin liquid candidate,similar to Pippard’s coherence length in superconductors.Our approach therefore offers a new experimental probe of the intangible quantum state of matter with topological order.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0302900,2016YFA0300500,2018YFA0704200,2017YFA0303100,and 2016YFA0300600)the National Natural Science Foundation of China(Grant Nos.11874401,11674406,11674372,11961160699,11774399,12061130200,11974392,and 11822411)+4 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000,XDB07020000,XDB33000000,and XDB28000000)the Beijing Natural Science Foundation(Grant Nos.Z180008 and JQ19002)Guangdong Introducing Innovative and Entrepreneurial Teams(Grant No.2017ZT07C062)the Youth Innovation Promotion Association of CAS(Grant No.2016004)the Royal Society-Newton Advanced Fellowship(Grant No.NAF∖R1∖201248).
文摘We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrange magnetic order and the orthorhombic nuclear structure in the x=0 sample can persist up to x=0.23 and 0.43,respectively.The temperature dependence of the zero-field μSR spectra provides two characteristic temperatures,TA0 and Tλ,which are associated with the initial drop close to zero time and the long-time exponential decay of the muon relaxation,respectively.Comparison between TA0 and TM from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to x=0.82.On the other hand,the doping level where Tλ becomes zero is about 0.66,which is much higher than threshold of the long-range order,i.e.,~0.4.Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above x=0.66 with the perfect kagome planes.