This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)i...This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|.展开更多
The Sobolev space H^(■)(R^(d)),where■>d/2,is an important function space that has many applications in various areas of research.Attributed to the inertia of a measurement instrument,it is desirable in sampling t...The Sobolev space H^(■)(R^(d)),where■>d/2,is an important function space that has many applications in various areas of research.Attributed to the inertia of a measurement instrument,it is desirable in sampling theory to recover a function by its nonuniform sampling.In the present paper,based on dual framelet systems for the Sobolev space pair(H^(s)(R^(d)),H^(-s)(R^(d))),where d/2<s<■,we investigate the problem of constructing the approximations to all the functions in H^(■)(R^(d))by nonuniform sampling.We first establish the convergence rate of the framelet series in(H^(s)(R^(d)),H^(-s)(R^(d))),and then construct the framelet approximation operator that acts on the entire space H^(■)(R^(d)).We examine the stability property for the framelet approximation operator with respect to the perturbations of shift parameters,and obtain an estimate bound for the perturbation error.Our result shows that under the condition d/2<s<■,the approximation operator is robust to shift perturbations.Motivated by Hamm(2015)’s work on nonuniform sampling and approximation in the Sobolev space,we do not require the perturbation sequence to be in■^(α)(Z^(d)).Our results allow us to establish the approximation for every function in H^(■)(R^(d))by nonuniform sampling.In particular,the approximation error is robust to the jittering of the samples.展开更多
基金The Science and Technology Development Fund,Macao SAR(File no.0123/2018/A3)supported by the Natural Science Foundation of China(61961003,61561006,11501132)+2 种基金Natural Science Foundation of Guangxi(2016GXNSFAA380049)the talent project of the Education Department of the Guangxi Government for one thousand Young-Middle-Aged backbone teachersthe Natural Science Foundation of China(12071035)。
文摘This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|.
基金supported by National Natural Science Foundation of China(Grant Nos.61961003,61561006 and 11501132)Natural Science Foundation of Guangxi(Grant Nos.2018JJA110110 and 2016GXNSFAA380049)+1 种基金the talent project of Education Department of Guangxi Government for Young-Middle-Aged Backbone Teacherssupported by National Science Foundation of USA(Grant No.DMS-1712602)。
文摘The Sobolev space H^(■)(R^(d)),where■>d/2,is an important function space that has many applications in various areas of research.Attributed to the inertia of a measurement instrument,it is desirable in sampling theory to recover a function by its nonuniform sampling.In the present paper,based on dual framelet systems for the Sobolev space pair(H^(s)(R^(d)),H^(-s)(R^(d))),where d/2<s<■,we investigate the problem of constructing the approximations to all the functions in H^(■)(R^(d))by nonuniform sampling.We first establish the convergence rate of the framelet series in(H^(s)(R^(d)),H^(-s)(R^(d))),and then construct the framelet approximation operator that acts on the entire space H^(■)(R^(d)).We examine the stability property for the framelet approximation operator with respect to the perturbations of shift parameters,and obtain an estimate bound for the perturbation error.Our result shows that under the condition d/2<s<■,the approximation operator is robust to shift perturbations.Motivated by Hamm(2015)’s work on nonuniform sampling and approximation in the Sobolev space,we do not require the perturbation sequence to be in■^(α)(Z^(d)).Our results allow us to establish the approximation for every function in H^(■)(R^(d))by nonuniform sampling.In particular,the approximation error is robust to the jittering of the samples.