Investigation on the bright and stable upconversion(UC)phosphors with multicolor emissions is fundamental and significant for the frontier applications of display and tempe rature probe.He re,dive rse emitting colors ...Investigation on the bright and stable upconversion(UC)phosphors with multicolor emissions is fundamental and significant for the frontier applications of display and tempe rature probe.He re,dive rse emitting colors with blue,cyan and yellowish green,which are caused by the energy transfer and crossrelaxation processes,are obtained by altering Er^3+,Tm^3+and Yb^3+concentrations in Er3+singly,Er^3+-Tm^3+-Yb^3+co-and tri-doped double perovskite La2ZnTiO6(LZT)phosphors synthesized by a simple solid-state reaction.In addition,excellent infrared emission at 801 nm located at"first biological windo w"is collected in Tm^3+-Yb^3+co-doped phosphors.Meanwhile,the temperature sensing properties based on the thermally coupled levels((^2H11/2)/(^4S3/2))of Er3+ions were analyzed from 298 to 573 K of LZT:0.15 Er^3+/0.10 Yb^3+phosphor,demonstrating that the maximal sensitivity value is about56×10^-4 K^-1 at 448 K.All these results imply that this kind of UC material has potential applications in display,bioimaging and optical device.展开更多
Carbon dots(CDs) with fluorescence(FL) and room-temperature phosphorescence(RTP) optical properties have attracted dramatically growing interest in anti-counterfeiting application. Herein, color-tunable and stable FL ...Carbon dots(CDs) with fluorescence(FL) and room-temperature phosphorescence(RTP) optical properties have attracted dramatically growing interest in anti-counterfeiting application. Herein, color-tunable and stable FL and ultralong RTP(to naked eyes ~14 s) are successfully achieved in CDs system. Encoding information and patterns fabricated by directly screen-printing method are invisible to eyes under natural light. Interestingly, clear and multicolor patterns with tunable FL and RTP emissions are identified under the 365 nm, 395 nm and 465 nm excitation and removal of them, indicating potential application of carbon dots with different FL and RTP outputs in the high-level photonic anti-counterfeiting field.展开更多
基金supported by the National Natural Science Foundation of China(11464017,11864015)the Scientific Research Foundation for Universities from the Education Bureau of Jiangxi Province(GJJ170490)+1 种基金Foundation of Natural Science Funds for Distinguished Young Scholar of Jiangxi Province(20171BCB23064)the Science and Technology Major Project of Jiangxi Province(20165ABC28010).
文摘Investigation on the bright and stable upconversion(UC)phosphors with multicolor emissions is fundamental and significant for the frontier applications of display and tempe rature probe.He re,dive rse emitting colors with blue,cyan and yellowish green,which are caused by the energy transfer and crossrelaxation processes,are obtained by altering Er^3+,Tm^3+and Yb^3+concentrations in Er3+singly,Er^3+-Tm^3+-Yb^3+co-and tri-doped double perovskite La2ZnTiO6(LZT)phosphors synthesized by a simple solid-state reaction.In addition,excellent infrared emission at 801 nm located at"first biological windo w"is collected in Tm^3+-Yb^3+co-doped phosphors.Meanwhile,the temperature sensing properties based on the thermally coupled levels((^2H11/2)/(^4S3/2))of Er3+ions were analyzed from 298 to 573 K of LZT:0.15 Er^3+/0.10 Yb^3+phosphor,demonstrating that the maximal sensitivity value is about56×10^-4 K^-1 at 448 K.All these results imply that this kind of UC material has potential applications in display,bioimaging and optical device.
基金supported by the Natural Science Foundation of Hubei Province for Distinguished Young Scholars (No. 2019CFA056)the Fundamental Research Funds for the Central Universities and Wuhan University and the Fundamental Research Funds for the Central Universities (No. 2042021kf0226)。
文摘Carbon dots(CDs) with fluorescence(FL) and room-temperature phosphorescence(RTP) optical properties have attracted dramatically growing interest in anti-counterfeiting application. Herein, color-tunable and stable FL and ultralong RTP(to naked eyes ~14 s) are successfully achieved in CDs system. Encoding information and patterns fabricated by directly screen-printing method are invisible to eyes under natural light. Interestingly, clear and multicolor patterns with tunable FL and RTP emissions are identified under the 365 nm, 395 nm and 465 nm excitation and removal of them, indicating potential application of carbon dots with different FL and RTP outputs in the high-level photonic anti-counterfeiting field.