3D audio effects can provide immersive auditory experience, but we often face the so-called in-head localization (IHL) problem in headphone sound reproduction. To ad- dress this problem, we propose an effective soun...3D audio effects can provide immersive auditory experience, but we often face the so-called in-head localization (IHL) problem in headphone sound reproduction. To ad- dress this problem, we propose an effective sound image externalization approach. Specifically, we consider several important factors related to sound propagation, which include image-source model based early reflections with distance decay, wall absorption and air absorption, late reverberation and other dynamic factors like head movement. We apply our sound image externalization approach to a headphone based real-time 3D audio system. Subjective listening tests show that the sound image externalization performance is significantly improved and the sound source direction is preserved as well. A/B preference test further shows that, as compared with a recent popular approach, the proposed approach is mostly preferred by the listeners.展开更多
文摘3D audio effects can provide immersive auditory experience, but we often face the so-called in-head localization (IHL) problem in headphone sound reproduction. To ad- dress this problem, we propose an effective sound image externalization approach. Specifically, we consider several important factors related to sound propagation, which include image-source model based early reflections with distance decay, wall absorption and air absorption, late reverberation and other dynamic factors like head movement. We apply our sound image externalization approach to a headphone based real-time 3D audio system. Subjective listening tests show that the sound image externalization performance is significantly improved and the sound source direction is preserved as well. A/B preference test further shows that, as compared with a recent popular approach, the proposed approach is mostly preferred by the listeners.