期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanism of lead immobilization by oxalic acid-activated phosphate rocks 被引量:14
1
作者 Guanjie Jiang Yonghong Liu +3 位作者 Li Huang Qingling Fu youjun deng Hongqing Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第5期919-925,共7页
Lead (Pb) chemical fixation is an important environmental aspect for human health. Phosphate rocks (PRs) were utilized as an adsorbent to remove Pb from aqueous solution. Raw PRs and oxalic acid-activated PRs (A... Lead (Pb) chemical fixation is an important environmental aspect for human health. Phosphate rocks (PRs) were utilized as an adsorbent to remove Pb from aqueous solution. Raw PRs and oxalic acid-activated PRs (APRs) were used to investigate the effect of chemical modification on the Pb-binding capacity in the pH range 2.0-5.0. The Pb adsorption rate of all treatments above pH 3.0 reached 90%. The Pb binding on PRs and APRs was pH-independent, except at pH 2.0 in activated treatments. The X-ray diffraction analysis confirmed that the raw PRs formed cerussite after reacting with the Pb solution, whereas the APRs formed pyromorphite. The Fourier Transform Infrared spectroscopy analysis indicated that carbonate (CO32-) in raw PRs and phosphate (PO43-) groups in APRs played an important role in the Pb-binding process. After adsorption, anomalous block-shaped particles were observed by scanning electron microscopy with energy dispersive spectroscopy. The X-ray photoelectron spectroscopy data further indicated that both chemical and physical reactions occurred during the adsorption process according to the binding energy. Because of lower solubility of pyromorphite compared to cerussite, the APRs are more effective in immobilizing Pb than that of PRs. 展开更多
关键词 PB activated phosphate rocks oxalic acid IMMOBILIZATION
原文传递
Influence of metal ions on sulfonamide antibiotics biochemical behavior in fiber coexisting system 被引量:4
2
作者 Lan Zhang Ruihuan Chen +3 位作者 Yun Liu youjun deng Zhongpei Li Yuanhua Dong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第6期267-276,共10页
Metal ions and fiber are common compounds in the livestock and poultry manure,which will affect the fate of organic compounds in aqueous environment. However,limited research has addressed the effect of coexisting met... Metal ions and fiber are common compounds in the livestock and poultry manure,which will affect the fate of organic compounds in aqueous environment. However,limited research has addressed the effect of coexisting metal ions and fiber on the biodegradation of sulfonamide antibiotics. Accordingly, a compositing study was performed to assess the effect of metal ions(Fe3+and Cu2+) on the biodegradation of sulfadimethoxine sodium salt(SDM) in the presence of fiber. The enhanced adsorption of SDM onto fiber in the presence of metal ions can be attributed to the π+–π electron donor acceptor(EDA) interaction. The microbial(Phanerochaete chrysosprium) could easily attach onto fiber forming attached microbial, and the degradation rates of SDM of immobilized bacteria in the presence of Fe3 +were 100%, which were significantly higher than those of free bacteria(45%). This study indicates that Fe3 +and fiber could enhance the biodegradation of SDM. Fiber acts as adsorbent, carrier, and substrate which enhanced the removal of SDM. 展开更多
关键词 Adsorption mechanism Co-biodegradation LUFFA FIBER WHITE-ROT FUNGUS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部