Carbon-coated SiC@C nanocapsules (NCs) with a hexagonal platelet-like morphology were fabricated by a simple direct current (DC) arc-discharge plasma method. The SiC@C NCs were monocrystalline, 120-150 nm in size,...Carbon-coated SiC@C nanocapsules (NCs) with a hexagonal platelet-like morphology were fabricated by a simple direct current (DC) arc-discharge plasma method. The SiC@C NCs were monocrystalline, 120-150 nm in size, and approximately 50 nm thick. The formation of the as-prepared SiC@C NCs included nucleation of truncated octahedral SiC seeds and subsequent anisotropic growth of the seeds into hexagonal nanoplatelets in a carbon-rich atmosphere. The disordered carbon layers on the SiC@C NCs were converted into SiO2 shells of SiC@SiO2 NCs by heat treatment at 650 ℃ in air, during which the shape and inherent characteristics of the crystalline SiC core were obtained. The interface evolution from carbon to SiO2 shells endowed the SiC@SiO2 NCs with enhanced photocatalytic activity due to the hydrophilic and transparent nature of the SiO2 shell, as well as to the photosensitive SiC nanocrystals. The band gap of the nanostructured SiC core was determined to be 2.70 eV. The SiC@SiO2 NCs degraded approximately 95% of methylene blue in 160 min under visible light irradiation.展开更多
Benefitting from higher specific capacities,acceptable cost,nontoxicity and unique crystal structures,the molybdenum oxides have been studied as the anode materials for lithium ion batteries(LIBs).Herein,a direct curr...Benefitting from higher specific capacities,acceptable cost,nontoxicity and unique crystal structures,the molybdenum oxides have been studied as the anode materials for lithium ion batteries(LIBs).Herein,a direct current(DC)arc-discharge plasma technique has been developed to in-situ synthesize carboncoated monocrystal molybdenum oxides((MoO3NRs/MoO2NPs)@C)nanocomposites,using coarse MoO_(3) bulk as the raw material and methane(CH4)gas as the carbon source.It is indicated that crystallographic traits of MoO_(3) and MoO2 nuclei give rise to an anisotropic growth of monocrystal MoO3 nanorods(NRs)along<100>direction and an isotropic growth of monocrystal MoO_(2) nanoparticles(NPs).The carbon shells on MoO3/MoO2 nanostructures are generated from the absorption of carbon atoms in surrounding atmosphere or the release of supersaturated carbon atoms in MoeOeC solid solution.Unique constitution and pseudo-capacitive behavior of(MoO3NRs/MoO2NPs)@C bring merits to excellent cycling performance and rate capability,i.e.a remarkable specific capacity of 840 mAh·g^(-1) after 100 cycles at a current density of 0.1 Ag^(-1) and a retained capacity of 210 mAh·g^(-1) at 6.4 A g^(-1).This work has offered a simple and efficient approach to fabricate the carbon-coated molybdenum oxides nanostructures for promising anode materials of LIBs。展开更多
基金This work was financially supported from National Natural Science Foundations of China (Nos. 51331006 and 51271044).
文摘Carbon-coated SiC@C nanocapsules (NCs) with a hexagonal platelet-like morphology were fabricated by a simple direct current (DC) arc-discharge plasma method. The SiC@C NCs were monocrystalline, 120-150 nm in size, and approximately 50 nm thick. The formation of the as-prepared SiC@C NCs included nucleation of truncated octahedral SiC seeds and subsequent anisotropic growth of the seeds into hexagonal nanoplatelets in a carbon-rich atmosphere. The disordered carbon layers on the SiC@C NCs were converted into SiO2 shells of SiC@SiO2 NCs by heat treatment at 650 ℃ in air, during which the shape and inherent characteristics of the crystalline SiC core were obtained. The interface evolution from carbon to SiO2 shells endowed the SiC@SiO2 NCs with enhanced photocatalytic activity due to the hydrophilic and transparent nature of the SiO2 shell, as well as to the photosensitive SiC nanocrystals. The band gap of the nanostructured SiC core was determined to be 2.70 eV. The SiC@SiO2 NCs degraded approximately 95% of methylene blue in 160 min under visible light irradiation.
基金supported by the National Natural Science Foundation of China(No.U1908220)the Research Project of Shanxi Datong University,China.
文摘Benefitting from higher specific capacities,acceptable cost,nontoxicity and unique crystal structures,the molybdenum oxides have been studied as the anode materials for lithium ion batteries(LIBs).Herein,a direct current(DC)arc-discharge plasma technique has been developed to in-situ synthesize carboncoated monocrystal molybdenum oxides((MoO3NRs/MoO2NPs)@C)nanocomposites,using coarse MoO_(3) bulk as the raw material and methane(CH4)gas as the carbon source.It is indicated that crystallographic traits of MoO_(3) and MoO2 nuclei give rise to an anisotropic growth of monocrystal MoO3 nanorods(NRs)along<100>direction and an isotropic growth of monocrystal MoO_(2) nanoparticles(NPs).The carbon shells on MoO3/MoO2 nanostructures are generated from the absorption of carbon atoms in surrounding atmosphere or the release of supersaturated carbon atoms in MoeOeC solid solution.Unique constitution and pseudo-capacitive behavior of(MoO3NRs/MoO2NPs)@C bring merits to excellent cycling performance and rate capability,i.e.a remarkable specific capacity of 840 mAh·g^(-1) after 100 cycles at a current density of 0.1 Ag^(-1) and a retained capacity of 210 mAh·g^(-1) at 6.4 A g^(-1).This work has offered a simple and efficient approach to fabricate the carbon-coated molybdenum oxides nanostructures for promising anode materials of LIBs。