Designing super-broadband transparent conductors is challenging because of the exclusive nature of conductivity and infrared transmittance.Here,using a one-step process,we created vertically aligned nanocomposite cond...Designing super-broadband transparent conductors is challenging because of the exclusive nature of conductivity and infrared transmittance.Here,using a one-step process,we created vertically aligned nanocomposite conducting films with high transparency across a super-broad wavelength range.Vertically aligned transparent Ba_(3)V_(2)O_(8)nanocolumns with lateral-100-nm widths enable high transmittance(>50%,even at a 4-μm wavelength)for all incident light and outperform that of Sn-doped In_(2)O_(3),while the conducting SrVO_(3)matrix retains low resistivity(<0.56 mΩcm at room temperature).A combined study of scanning transmission electron microscopy,scattering scanning nearfield infrared microscopy,and X-ray diffraction revealed that spontaneous phase separation of Ba_(3)V_(2)O_(8)nanocolumns in a SrVO_(3)matrix film occurs via self-assembled epitaxial nucleation.Our vertically aligned nanocomposite films provide a fertile platform for next-generation optoelectronics.展开更多
基金supported by the national R&D programs through the National Research Foundation of Korea funded by the Ministry of Science and ICT(Project Nos.:NRF-2021M3F3A2A03015439,NRF-2021R1C1C1005042,and NRF-2018R1A5A1025511)We also acknowledge partial support from the national R&D programs through the National Research Foundation of Korea funded by the Ministry of Education(Project No.:NRF-2021R1A6A3A13043948)+1 种基金the DGIST R&D program of the Ministry of Science and ICT of Korea(Project Nos.:22-HRHR+-05,22-CoE-NT-02,and 22-SENS-1)Judith L.MacManus-Driscoll thanks the EU-H2020-ERC-ADG#882929 EROS grant for support,and the Royal Academy of Engineering-grant CIET1819_24.
文摘Designing super-broadband transparent conductors is challenging because of the exclusive nature of conductivity and infrared transmittance.Here,using a one-step process,we created vertically aligned nanocomposite conducting films with high transparency across a super-broad wavelength range.Vertically aligned transparent Ba_(3)V_(2)O_(8)nanocolumns with lateral-100-nm widths enable high transmittance(>50%,even at a 4-μm wavelength)for all incident light and outperform that of Sn-doped In_(2)O_(3),while the conducting SrVO_(3)matrix retains low resistivity(<0.56 mΩcm at room temperature).A combined study of scanning transmission electron microscopy,scattering scanning nearfield infrared microscopy,and X-ray diffraction revealed that spontaneous phase separation of Ba_(3)V_(2)O_(8)nanocolumns in a SrVO_(3)matrix film occurs via self-assembled epitaxial nucleation.Our vertically aligned nanocomposite films provide a fertile platform for next-generation optoelectronics.