期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
2D spinel ZnCo_(2)O_(4) microsheet-coated functional separator for promoted redox kinetics and inhibited polysulfide dissolution
1
作者 Jeong Seok Yeon Tae Ho Park +4 位作者 Young Hun Ko Periyasamy Sivakumar Jun Su kim youngkywon kim Ho Seok Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期468-475,共8页
Lithium-sulfur(Li-S)batteries are receiving increasing attention as one of the potential next-generation batteries,owing to their high energy densities and low cost.However,practical Li-S batteries with high energy de... Lithium-sulfur(Li-S)batteries are receiving increasing attention as one of the potential next-generation batteries,owing to their high energy densities and low cost.However,practical Li-S batteries with high energy densities are extremely hindered by the sulfur loss,low Coulombic efficiency,and short cycling life originating from the polysulfide(LiPS)shuttle.In this study,two-dimensional(2D)ZnCo_(2)O_(4) microsheets fabricated by a facile hydrothermal process are employed to modify the separator,for improving the electrochemical performances of Li-S cells.The resulting 2D Zn Co_(2)O_(4)-coated separator features a coating thickness of approximately 10 lm,high ionic conductivity of 1.8 m S/cm,and low mass loading of 0.2 mg/cm^(2).This 2D ZnCo_(2)O_(4)-coated separator effectively inhibits Li PS shuttle by a strong chemical interaction with Li PS as well as promotes the redox kinetics by Zn CO2O4-coated layers,as determined by X-ray photoelectron spectroscopy analysis,self-discharge,time-dependent permeation test,Li symmetric cell test,and Li2S nucleation analyses.Consequently,the Li-S batteries based on the 2D Zn Co_(2)O_(4)-coated separator exhibit a high initial discharge capacity of 1292.2 m Ah/g at 0.1 C.Moreover,they exhibit excellent long cycle stability at 1 and 2 C with capacity retention of 84%and 86%even after800 cycles,corresponding to a capacity fading rate of 0.020%and 0.016%per cycle,respectively.Effectively,these Li-S cells with a high sulfur loading at 5.3 mg/cm^(2) and low electrolyte concentration of 9 l L/mg deliver a high discharge capacity of 4.99 m Ah/cm^(2) after 200 cycles at 0.1 C. 展开更多
关键词 Lithium sulfur batteries Functional separator 2D microsheet POLYSULFIDE Redox kinetics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部