Magnetic starch microspheres(AAM-MSM)were synthesized via an inverse emulsion graft copolymerization by using mechanically activated cassava starch(MS)as a crude material,acrylic acid(AA)and acrylamide(AM)as graft cop...Magnetic starch microspheres(AAM-MSM)were synthesized via an inverse emulsion graft copolymerization by using mechanically activated cassava starch(MS)as a crude material,acrylic acid(AA)and acrylamide(AM)as graft copolymer monomers,and methyl methacrylate(MMA)as the dispersing agent and used as an adsorbent for the removal of Cd(Ⅱ)ions from aqueous solution.Fourier-transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and vibrating sample magnetometry(VSM)were used to characterize the AAM-MSM adsorbent.The results indicated that AA,AM,and MMA were grafted to the MS,and the Fe_(3)O_(4) nanoparticles were encapsulated in the AAM-MSM adsorbent microspheres.The adsorbent exhibited a smooth surface,uniform size,and good sphericity because of the addition of the MMA and provided more adsorption sites for the Cd(Ⅱ)ions.The maximum adsorption capacity of Cd(Ⅱ)on the AAM-MSM was 39.98 mg·g^(-1).The adsorbents were superparamagnetic,and the saturation magnetization was 16.7 A·m^(2)·kg^(-1).Additionally,the adsorption isotherms and kinetics of the adsorption process were further investigated.The process of Cd(Ⅱ)ions adsorbed onto the AAM-MSM could be described more favorably by the pseudo-second-order kinetic and Langmuir isothermal adsorption models,which suggested that the chemical reaction process dominated the adsorption process for the Cd(Ⅱ)and chemisorption was the rate-controlling step during the Cd(Ⅱ)removal process.展开更多
基金This work was supported by the National Natural Science Foundation of China(21766001,21961160741)Guangxi Natural Science Foundation of China(2018GXNSFAA281342)+1 种基金the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2018Z009)Special funding for"Guangxi Bagui Scholars".
文摘Magnetic starch microspheres(AAM-MSM)were synthesized via an inverse emulsion graft copolymerization by using mechanically activated cassava starch(MS)as a crude material,acrylic acid(AA)and acrylamide(AM)as graft copolymer monomers,and methyl methacrylate(MMA)as the dispersing agent and used as an adsorbent for the removal of Cd(Ⅱ)ions from aqueous solution.Fourier-transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and vibrating sample magnetometry(VSM)were used to characterize the AAM-MSM adsorbent.The results indicated that AA,AM,and MMA were grafted to the MS,and the Fe_(3)O_(4) nanoparticles were encapsulated in the AAM-MSM adsorbent microspheres.The adsorbent exhibited a smooth surface,uniform size,and good sphericity because of the addition of the MMA and provided more adsorption sites for the Cd(Ⅱ)ions.The maximum adsorption capacity of Cd(Ⅱ)on the AAM-MSM was 39.98 mg·g^(-1).The adsorbents were superparamagnetic,and the saturation magnetization was 16.7 A·m^(2)·kg^(-1).Additionally,the adsorption isotherms and kinetics of the adsorption process were further investigated.The process of Cd(Ⅱ)ions adsorbed onto the AAM-MSM could be described more favorably by the pseudo-second-order kinetic and Langmuir isothermal adsorption models,which suggested that the chemical reaction process dominated the adsorption process for the Cd(Ⅱ)and chemisorption was the rate-controlling step during the Cd(Ⅱ)removal process.