PrrOll nanoparticles were obtained by subsequent thermal decomposition of the as-prepared precipitate formed under ambient temperature and pressure using NaOH as precipitant. The calcination process was affected, for ...PrrOll nanoparticles were obtained by subsequent thermal decomposition of the as-prepared precipitate formed under ambient temperature and pressure using NaOH as precipitant. The calcination process was affected, for 1 h in static air atmosphere, at 400-700 ℃ temperature range. The different samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), in situ electrical conductivity, and N2 adsorption/desorption. The obtained results demonstrated that nano-crystalline Pr6O11, with crystallites size of 6-12 nm, started to form at 500 ℃. Such value increased to 20-33 nm for the sample calcined at 700℃. The as-synthesized PrrOll nanoparticles presented high electrical conductivity due to electron hopping between Pr(III)-Pr(IV) pairs.展开更多
文摘PrrOll nanoparticles were obtained by subsequent thermal decomposition of the as-prepared precipitate formed under ambient temperature and pressure using NaOH as precipitant. The calcination process was affected, for 1 h in static air atmosphere, at 400-700 ℃ temperature range. The different samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), in situ electrical conductivity, and N2 adsorption/desorption. The obtained results demonstrated that nano-crystalline Pr6O11, with crystallites size of 6-12 nm, started to form at 500 ℃. Such value increased to 20-33 nm for the sample calcined at 700℃. The as-synthesized PrrOll nanoparticles presented high electrical conductivity due to electron hopping between Pr(III)-Pr(IV) pairs.