期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
CORMAND2--针对工业机器人的欺骗攻击
1
作者 Hongyi Pu Liang He +2 位作者 Peng Cheng Jiming Chen youxian sun 《Engineering》 SCIE EI CAS CSCD 2024年第1期186-201,共16页
Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vu... Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for. 展开更多
关键词 Industrial robots Vulnerability analysis Deception attacks DEFENSES
下载PDF
Kernel matrix learning with a general regularized risk functional criterion 被引量:3
2
作者 Chengqun Wang Jiming Chen +1 位作者 Chonghai Hu youxian sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期72-80,共9页
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is... Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method. 展开更多
关键词 kernel method support vector machine kernel matrix learning HKRS geometric distribution regularized risk functional criterion.
下载PDF
Support vector machine-based multi-model predictive control 被引量:3
3
作者 Zhejing BAO youxian sun 《控制理论与应用(英文版)》 EI 2008年第3期305-310,共6页
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ... In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results. 展开更多
关键词 Multi-model predictive control Support vector machine network Multi-class support vector machine Multi-model switching
下载PDF
Intelligent Ironmaking Optimization Service on a Cloud Computing Platform by Digital Twin 被引量:3
4
作者 Heng Zhou Chunjie Yang youxian sun 《Engineering》 SCIE EI 2021年第9期1274-1281,共8页
The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose... The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose a multi-objective optimization framework based on cloud services and a cloud distribution system.Real-time data from manufacturing procedures are first temporarily stored in a local database,and then transferred to the relational database in the cloud.Next,a distribution system with elastic compute power is set up for the optimization framework.Finally,a multi-objective optimization model based on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the blast furnace ironmaking process.With the application of this optimization service in a cloud factory,iron production was found to increase by 83.91 t∙d^(-1),the coke ratio decreased 13.50 kg∙t^(-1),and the silicon content decreased by an average of 0.047%. 展开更多
关键词 Cloud factory Blast furnace Multi-objective optimization Distributed computation
下载PDF
Dust Distribution Study at the Blast Furnace Top Based on k-Sε-u_(p)Model 被引量:2
5
作者 Zhipeng Chen Zhaohui Jiang +2 位作者 Chunjie Yang Weihua Gui youxian sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期121-135,共15页
The dust distribution law acting at the top of a blast fumace(BF)is of great significance for understanding gas flow distribution and mitigating the negative influence of dust particles on the accuracy and service lif... The dust distribution law acting at the top of a blast fumace(BF)is of great significance for understanding gas flow distribution and mitigating the negative influence of dust particles on the accuracy and service life of detection equipment.The harsh environment inside a BF makes it difficult to describe the dust disthibution.This paper adresses this problem by proposing a dust distribution k-Sε-u_(p)model based on interphase(gas-powder)coupling.The proposed model is coupled with a k-Sεmodel(which describes gas flow movement)and a u_(p)model(which depicts dust movement).First,the kinetic energy equation and turbulent dissipation rate equation in the k-Sεmodel are established based on the modeling theory and single Green-function two scale direct interaction approximation(SGF-TSDIA)theory.Second,a dust particle mnovement u_(p)model is built based on a force analysis of the dust and Newton's laws of motion.Finally,a coupling factor that descibes the interphase interaction is proposed,and the k-Sε-u_(p)model,with clear physical meaning.ligorous mathematical logic,and adequate generality,is dleveloped.Siumulation results and o-site verification show that the k-Sε-u_(p)model not only has high precision,but also reveals the aggregate distribution features of the dust,which are helpful in optimizing the installation position of the detection equipment and imnproving its accuracy and service life. 展开更多
关键词 Blast furnace(BF) dust movement interphase interaction modeling theory turbulent flow two-scale direct interaction approximation(TSDIA)
下载PDF
Guest Editorial for Special Issue on Cyber-Physical Systems
6
作者 youxian sun Xinping Guan +1 位作者 Jiming Chen Yilin Mo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第3期233-234,共2页
Ⅰ.Introduction CYBER-PHYSICAL system is a system of collaborating computational elements to control physical entities.The coordination and the tight link between computational,virtual and physical resources in cyber-... Ⅰ.Introduction CYBER-PHYSICAL system is a system of collaborating computational elements to control physical entities.The coordination and the tight link between computational,virtual and physical resources in cyber-physical system will have a pervasive effect on our everyday life.The development of cyber-physical system will create new opportunities for the introduction of services that will enhance the quality of life 展开更多
关键词 for WSAN Guest Editorial for Special Issue on Cyber-Physical Systems of into on WSN IS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部