In this paper, we introduce the pre-frame operator Q for the g-frame in a complex Hilbert space, which will play a key role in studying g-frames and g-Riesz bases etc. Using the pre-frame operator Q, we give some nece...In this paper, we introduce the pre-frame operator Q for the g-frame in a complex Hilbert space, which will play a key role in studying g-frames and g-Riesz bases etc. Using the pre-frame operator Q, we give some necessary and sufficient conditions for a g-Bessel sequence, a g-frame, and a g-Riesz basis in a complex Hilbert space, which have properties similar to those of the Bessel sequence, frame, and Riesz basis respectively. We also obtain the relation between a g-frame and a g-Riesz basis, and the relation of bounds between a g-frame and a g-Riesz basis. Lastly, we consider the stability of a g-frame or a g-Riesz basis for a Hilbert space under perturbation.展开更多
In this paper, we introduce the concept of a g-Besselian frame in a Hilbert space and discuss the relations between a g-Besselian frame and a Besselian frame. We also give some characterizations of g-Besselian frames....In this paper, we introduce the concept of a g-Besselian frame in a Hilbert space and discuss the relations between a g-Besselian frame and a Besselian frame. We also give some characterizations of g-Besselian frames. In the end of this paper, we discuss the stability of g-Besselian frames. Our results show that the relations and the characterizations between a g-Besselian frame and a Besselian frame are different from the corresponding results of g-frames and frames.展开更多
In this paper, we introduce the concepts of q-Besselian frame and (p, σ)-near Riesz basis in a Banach space, where a is a finite subset of positive integers and 1/p+1/q = 1 with p 〉 1, q 〉 1, and determine the r...In this paper, we introduce the concepts of q-Besselian frame and (p, σ)-near Riesz basis in a Banach space, where a is a finite subset of positive integers and 1/p+1/q = 1 with p 〉 1, q 〉 1, and determine the relations among q-frame, p-Riesz basis, q-Besselian frame and (p, σ)-near Riesz basis in a Banach space. We also give some sufficient and necessary conditions on a q-Besselian frame for a Banach space. In particular, we prove reconstruction formulas for Banach spaces X and X^* that if {xn}n=1^∞ C X is a q-Besselian frame for X, then there exists a p-Besselian frame {y&*}n=1^∞ belong to X^* for X^* such that x = ∑n=1^∞ yn^*(x)xn for all x ∈ X, and x^* =∑n=1^∞ x^*(xn)yn^* for all x^* ∈ X^*. Lastly, we consider the stability of a q-Besselian frame for the Banach space X under perturbation. Some results of J. R. Holub, P. G. Casazza, O. Christensen and others in Hilbert spaces are extended to Banach spaces.展开更多
R-duals of certain sequences in Hilbert spaces were introduced by Casazza, Kutyniok and Lammers in 2004 and later generalized to Banach spaces by Xiao and Zhu. In this paper we provide some characterizations of R-dual...R-duals of certain sequences in Hilbert spaces were introduced by Casazza, Kutyniok and Lammers in 2004 and later generalized to Banach spaces by Xiao and Zhu. In this paper we provide some characterizations of R-dual sequences in Banach spaces.展开更多
In this paper, we give some equivalent conditions on a Banach frame for a Banach space by using the pseudoinverse operator. We also consider the stability of a Banach frame for a Banach space X with respect to Xd or a...In this paper, we give some equivalent conditions on a Banach frame for a Banach space by using the pseudoinverse operator. We also consider the stability of a Banach frame for a Banach space X with respect to Xd or an Xd-frame for a Banach space X under perturbation. These results generalize and improve the related works of Balan, Casazza, Christensen, Stoeva and Jian et al.展开更多
基金the Natural Science Foundation of Fujian Province,China (No.Z0511013)the Education Commission Foundation of Fujian Province,China (No.JB04038)
文摘In this paper, we introduce the pre-frame operator Q for the g-frame in a complex Hilbert space, which will play a key role in studying g-frames and g-Riesz bases etc. Using the pre-frame operator Q, we give some necessary and sufficient conditions for a g-Bessel sequence, a g-frame, and a g-Riesz basis in a complex Hilbert space, which have properties similar to those of the Bessel sequence, frame, and Riesz basis respectively. We also obtain the relation between a g-frame and a g-Riesz basis, and the relation of bounds between a g-frame and a g-Riesz basis. Lastly, we consider the stability of a g-frame or a g-Riesz basis for a Hilbert space under perturbation.
基金Supported by Natural Science Foundation of Fujian Province,China (Grant Nos.2009J01007,2008J0183)the Education Commission Foundation of Fujian Province,China (Grant No.JA08013)the Science Foundation for the Youth Scholars of Fujian Agriculture and Forestry University,China (Grant No.07B23)
文摘In this paper, we introduce the concept of a g-Besselian frame in a Hilbert space and discuss the relations between a g-Besselian frame and a Besselian frame. We also give some characterizations of g-Besselian frames. In the end of this paper, we discuss the stability of g-Besselian frames. Our results show that the relations and the characterizations between a g-Besselian frame and a Besselian frame are different from the corresponding results of g-frames and frames.
基金the Natural Science Foundation of Fujian Province,China(No.Z0511013)the Education Commission Foundation of Fujian Province,China(No.JB04038)
文摘In this paper, we introduce the concepts of q-Besselian frame and (p, σ)-near Riesz basis in a Banach space, where a is a finite subset of positive integers and 1/p+1/q = 1 with p 〉 1, q 〉 1, and determine the relations among q-frame, p-Riesz basis, q-Besselian frame and (p, σ)-near Riesz basis in a Banach space. We also give some sufficient and necessary conditions on a q-Besselian frame for a Banach space. In particular, we prove reconstruction formulas for Banach spaces X and X^* that if {xn}n=1^∞ C X is a q-Besselian frame for X, then there exists a p-Besselian frame {y&*}n=1^∞ belong to X^* for X^* such that x = ∑n=1^∞ yn^*(x)xn for all x ∈ X, and x^* =∑n=1^∞ x^*(xn)yn^* for all x^* ∈ X^*. Lastly, we consider the stability of a q-Besselian frame for the Banach space X under perturbation. Some results of J. R. Holub, P. G. Casazza, O. Christensen and others in Hilbert spaces are extended to Banach spaces.
基金Supported by the Scientific Research Start-up Foundation of Fuzhou University,China(Grant No.022410)the Science and Technology Funds from Fuzhou University,China(Grant No.2012-XQ-29)the Natural Science Foundation of Fujian Province,China(Grant No.2012J01005)
文摘R-duals of certain sequences in Hilbert spaces were introduced by Casazza, Kutyniok and Lammers in 2004 and later generalized to Banach spaces by Xiao and Zhu. In this paper we provide some characterizations of R-dual sequences in Banach spaces.
基金Supported by Natural Science Foundation of Fujian Province, China (Grant No. 2009J01007)Education Commission Foundation of Fujian Province, China (Grant No. JA08013)
文摘In this paper, we give some equivalent conditions on a Banach frame for a Banach space by using the pseudoinverse operator. We also consider the stability of a Banach frame for a Banach space X with respect to Xd or an Xd-frame for a Banach space X under perturbation. These results generalize and improve the related works of Balan, Casazza, Christensen, Stoeva and Jian et al.