Block introduced certain analogues of the Zassenhaus algebras over a field of characteristic 0. The nongraded infinite-dimensional simple Lie algebras of Block type constructed by Xu can be viewed as generalizations o...Block introduced certain analogues of the Zassenhaus algebras over a field of characteristic 0. The nongraded infinite-dimensional simple Lie algebras of Block type constructed by Xu can be viewed as generalizations of the Block algebras. In this paper, we construct a family of irreducible modules in terms of multiplication and differentiation operators on "polynomials" for four-devivation nongraded Lie algebras of Block type based on the finite-dimensional irreducible weight modules with multiplicity one of general linear Lie algebras. We also find a new series of submodules from which some irreducible quotient modules are obtained.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10701002)
文摘Block introduced certain analogues of the Zassenhaus algebras over a field of characteristic 0. The nongraded infinite-dimensional simple Lie algebras of Block type constructed by Xu can be viewed as generalizations of the Block algebras. In this paper, we construct a family of irreducible modules in terms of multiplication and differentiation operators on "polynomials" for four-devivation nongraded Lie algebras of Block type based on the finite-dimensional irreducible weight modules with multiplicity one of general linear Lie algebras. We also find a new series of submodules from which some irreducible quotient modules are obtained.