The secondary bud burst can cause around 10%-20%yield losses in black currants,an economically important crop in parts of Europe,Asia and North America.The metabolism of reactive oxygen species(ROS)has been linked to ...The secondary bud burst can cause around 10%-20%yield losses in black currants,an economically important crop in parts of Europe,Asia and North America.The metabolism of reactive oxygen species(ROS)has been linked to bud dormancy and its early release(secondary bud burst)in several fruit crops.But the relationship between ROS metabolism and the secondary bud burst is still not well understood in black currants.In the present study,two black currant cultivars(Adelinia and Heifeng)with opposing tendency of exhibiting the secondary bud burst were sprayed with abscisic acid(ABA)and gibberellic acid(GA_(3))to either inhibit or induce the secondary bud burst.The results showed that ABA inhibited the secondary bud burst by reducing the contents of ROS(H_(2)O_(2),O_(2)-·)in buds;decreasing the activities of superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT);and increasing the contents of oxidized glutathione(GSSG)and ascorbic acid(AsA).GA_(3) effectively induced the secondary bud burst by increasing ROS contents;increasing the activities of several antioxidant enzymes,such as SOD,POD,CAT,glutathione reductase(GR),ascorbate peroxidase(APX)and the contents of reduced glutathione(GSH);and decreasing the contents of AsA.The experimental results showed that GA_(3) treatment increased the content of ROS,accelerated the metabolism of reactive oxygen species,and promoted the second burst of black currants.However,ROS metabolism was at a low level under ABA treatment,and the buds remained dormant.These results suggested that ROS metabolism might play an important role in the two black currants of the secondary bud burst.展开更多
基金Supported by Academic Backbone Project of Northeast Agricultural University(20XG04)the National Key R&D Program of China(2018YFD1000200)Heilongjiang Province Postdoctoral Startup Fund(LBH-Q17029)。
文摘The secondary bud burst can cause around 10%-20%yield losses in black currants,an economically important crop in parts of Europe,Asia and North America.The metabolism of reactive oxygen species(ROS)has been linked to bud dormancy and its early release(secondary bud burst)in several fruit crops.But the relationship between ROS metabolism and the secondary bud burst is still not well understood in black currants.In the present study,two black currant cultivars(Adelinia and Heifeng)with opposing tendency of exhibiting the secondary bud burst were sprayed with abscisic acid(ABA)and gibberellic acid(GA_(3))to either inhibit or induce the secondary bud burst.The results showed that ABA inhibited the secondary bud burst by reducing the contents of ROS(H_(2)O_(2),O_(2)-·)in buds;decreasing the activities of superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT);and increasing the contents of oxidized glutathione(GSSG)and ascorbic acid(AsA).GA_(3) effectively induced the secondary bud burst by increasing ROS contents;increasing the activities of several antioxidant enzymes,such as SOD,POD,CAT,glutathione reductase(GR),ascorbate peroxidase(APX)and the contents of reduced glutathione(GSH);and decreasing the contents of AsA.The experimental results showed that GA_(3) treatment increased the content of ROS,accelerated the metabolism of reactive oxygen species,and promoted the second burst of black currants.However,ROS metabolism was at a low level under ABA treatment,and the buds remained dormant.These results suggested that ROS metabolism might play an important role in the two black currants of the secondary bud burst.