针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目...针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。展开更多
文摘针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。