Conventional dental materials lack of the hierarchical architecture of enamel that exhibits excellent intrinsic-extrinsic mechanical properties.Moreover,restorative failures frequently occur due to physical and chemic...Conventional dental materials lack of the hierarchical architecture of enamel that exhibits excellent intrinsic-extrinsic mechanical properties.Moreover,restorative failures frequently occur due to physical and chemical mismatch between artificial materials and native dental hard tissue followed by recurrent caries which is caused by sugar-fermenting,acidogenic bacteria invasion of the defective cite.In order to resolve the limitations of the conventional dental materials,the aim of this study was to establish a non-cell-based biomimetic strategy to fabricate a novel bioactive material with enamel-like structure and antibacterial adhesion property.The evaporation-based,bottom-up and self-assembly method with layer-by-layer technique were used to form a large-area fluorapatite crystal layer containing antibacterial components.The multilayered structure was constructed by hydrothermal growth of the fluorapatite crystal layer and highly conformal adsorption to the crystal surface of a polyelectrolyte matrix film.Characterization and mechanical assessment demonstrated that the synthesized bioactive material resembled the native enamel in chemical components,mechanical properties and crystallographic structure.Antibacterial and cytocompatibility evaluation demonstrated that this material had the antibacterial adhesion property and biocompatibility.In combination with the molecular dynamics simulations to reveal the effects of variables on the crystallization mechanism,this study brings new prospects for the synthesis of enamel-inspired materials.展开更多
基金The work described in this paper was fully supported by a grant from the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region,China and the National Natural Science Foundation of China(Project No.N-HKU706/20).
文摘Conventional dental materials lack of the hierarchical architecture of enamel that exhibits excellent intrinsic-extrinsic mechanical properties.Moreover,restorative failures frequently occur due to physical and chemical mismatch between artificial materials and native dental hard tissue followed by recurrent caries which is caused by sugar-fermenting,acidogenic bacteria invasion of the defective cite.In order to resolve the limitations of the conventional dental materials,the aim of this study was to establish a non-cell-based biomimetic strategy to fabricate a novel bioactive material with enamel-like structure and antibacterial adhesion property.The evaporation-based,bottom-up and self-assembly method with layer-by-layer technique were used to form a large-area fluorapatite crystal layer containing antibacterial components.The multilayered structure was constructed by hydrothermal growth of the fluorapatite crystal layer and highly conformal adsorption to the crystal surface of a polyelectrolyte matrix film.Characterization and mechanical assessment demonstrated that the synthesized bioactive material resembled the native enamel in chemical components,mechanical properties and crystallographic structure.Antibacterial and cytocompatibility evaluation demonstrated that this material had the antibacterial adhesion property and biocompatibility.In combination with the molecular dynamics simulations to reveal the effects of variables on the crystallization mechanism,this study brings new prospects for the synthesis of enamel-inspired materials.