β-decay half-life and β-delayed neutron emission(βn) are of great importance in the development of basic science and industrial applications, such as nuclear physics and nuclear energy, where β--decay plays an imp...β-decay half-life and β-delayed neutron emission(βn) are of great importance in the development of basic science and industrial applications, such as nuclear physics and nuclear energy, where β--decay plays an important role. Many theoretical models have been proposed to describe β-decay half-lives, whereas the systematic study of βn is still rare. This study aimed to investigate β--decay half-lives and βn probabilities through analytical formulas and by comparing them with experimental data. Analytical formulas for β--decay properties have been proposed by considering prominent factors, that is, decay energy,odevity, and the shell effect. The bootstrap method was used to simultaneously evaluate the total uncertainty on calculations,which was composed of statistic and systematic uncertainties. β--decay half-lives, βn probabilities, and the corresponding uncertainties were evaluated for the neutron-rich region. The experimental half-lives were well reproduced. Additional predictions are also presented with theoretical uncertainties, which helps to better understand the disparity between the experimental and theoretical results.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2021B0301030006)computational resources from Sun Yat-Sen University and the National Supercomputer Center in Guangzhou.
文摘β-decay half-life and β-delayed neutron emission(βn) are of great importance in the development of basic science and industrial applications, such as nuclear physics and nuclear energy, where β--decay plays an important role. Many theoretical models have been proposed to describe β-decay half-lives, whereas the systematic study of βn is still rare. This study aimed to investigate β--decay half-lives and βn probabilities through analytical formulas and by comparing them with experimental data. Analytical formulas for β--decay properties have been proposed by considering prominent factors, that is, decay energy,odevity, and the shell effect. The bootstrap method was used to simultaneously evaluate the total uncertainty on calculations,which was composed of statistic and systematic uncertainties. β--decay half-lives, βn probabilities, and the corresponding uncertainties were evaluated for the neutron-rich region. The experimental half-lives were well reproduced. Additional predictions are also presented with theoretical uncertainties, which helps to better understand the disparity between the experimental and theoretical results.