期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimized Electronic Modification of S-Doped CuO Induced by Oxidative Reconstruction for Coupling Glycerol Electrooxidation with Hydrogen Evolution
1
作者 Ruo‑Yao Fan Xue‑Jun Zhai +6 位作者 Wei‑Zhen Qiao yu‑sheng zhang Ning yu Na Xu Qian‑Xi Lv Yong‑Ming Chai Bin Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期622-637,共16页
Glycerol(electrochemical) oxidation reaction(GOR) producing organic small molecule acid and coupling with hydrogen evolution reaction is a critical aspect of ensuring balanced glycerol capacity and promoting hydrogen ... Glycerol(electrochemical) oxidation reaction(GOR) producing organic small molecule acid and coupling with hydrogen evolution reaction is a critical aspect of ensuring balanced glycerol capacity and promoting hydrogen generation on a large scale. However, the development of highly efficient and selective non-noble metal-based GOR electrocatalysts is still a key problem. Here, an S-doped CuO nanorod array catalyst(S-CuO/CF) constructed by sulfur leaching and oxidative remodeling is used to drive GOR at low potentials: It requires potentials of only 1.23 and 1.33 V versus RHE to provide currents of 100 and 500 mA cm^(-2), respectively. Moreover, it shows satisfactory comprehensive performance(at 100 mA cm^(-2), V_(cell) = 1.37 V) when assembled as the anode in asymmetric coupled electrolytic cell. Furthermore, we propose a detailed cycle reaction pathway(in alkaline environment) of S-doped CuO surface promoting GOR to produce formic acid and glycolic acid. Among them, the C–C bond breaking and lattice oxygen deintercalation steps frequently involved in the reaction pathway are the key factors to determine the catalytic performance and product selectivity. This research provides valuable guidance for the development of transition metal-based electrocatalysts for GOR and valuable insights into the glycerol oxidation cycle reaction pathway. 展开更多
关键词 Glycerol oxidation reaction(GOR) Hydrogen evolution reaction(HER) CUO Oxidative reconstruction Electronic modification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部