The exactly analytical solution for the dynamics of the dissipative Λ-type atom in the zero-temperature Lorentzian environment is presented. On this basis, we study the evolution of the population and entanglement. W...The exactly analytical solution for the dynamics of the dissipative Λ-type atom in the zero-temperature Lorentzian environment is presented. On this basis, we study the evolution of the population and entanglement. We find that the stable populations on the two lower levels of the Λ-type atom can be effectively adjusted by the combination of the relative decay rate and the environmental spectral frequency. However, for the initial Werner-like state, the stable entanglement between the two Λ-type atoms has very little tunability. Furthermore, the stable entanglement for the bilateral environment case is larger than that of the unilateral environmental case. A nonintuitive relation between the stable entanglement and stable population is found.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11275064)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20124306110003)the Construct Program of the National Key Discipline,China
文摘The exactly analytical solution for the dynamics of the dissipative Λ-type atom in the zero-temperature Lorentzian environment is presented. On this basis, we study the evolution of the population and entanglement. We find that the stable populations on the two lower levels of the Λ-type atom can be effectively adjusted by the combination of the relative decay rate and the environmental spectral frequency. However, for the initial Werner-like state, the stable entanglement between the two Λ-type atoms has very little tunability. Furthermore, the stable entanglement for the bilateral environment case is larger than that of the unilateral environmental case. A nonintuitive relation between the stable entanglement and stable population is found.