Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,t...Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,the drag coefficient correlation based on artificial neural network was applied in the simulations of a bubbling fluidized bed filled with non-spherical particles.The simulation results were compared with the experimental data from the literature.Good agreement between the experimental data and the simulation results reveals that the modified drag model can accurately capture the interaction between the gas phase and solid phase.Then,several cases of different particles,including tetrahedron,cube,and sphere,together with the nylon beads used in the model validation,were employed in the simulations to study the effect of particle shape on the flow behaviors in the bubbling fluidized bed.Particle shape affects the hydrodynamics of non-spherical particles mainly on microscale.This work can be a basis and reference for the utilization of artificial neural network in the investigation of drag coefficient correlation in the dense gas-solid two-phase flow.Moreover,the proposed drag coefficient correlation provides one more option when investigating the hydrodynamics of non-spherical particles in the gas-solid fluidized bed.展开更多
Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization ...Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization of non-spherical particles.Understanding mixing behaviors of binary mixtures in a fluidized bed has specific significance for the design and optimization of related industrial processes.In this study,the computational fluid dynamic-discrete element method with the consideration of rolling friction was applied to evaluate the mixing behaviors of binary mixtures comprising spherocylindrical particles and spherical particles in a fluidized bed.The simulation results indicate that the differences between rotational particle velocities were higher than those of translational particle velocities for spherical and non-spherical particles when well mixed.Moreover,as the volume fraction of the spherocylindrical particles increases,translational and rotational granular temperatures gradually increase.In addition,the addition of the spherical particles makes the spherocylindrical particles preferably distributed in a vertical orientation.展开更多
To solve the problem of conflict and deadlock with agents in multiagent system,an algorithm of multiagent coordination and cooperation was proposed. Taking agent in multiagent system as a player,the pursuit problem Ma...To solve the problem of conflict and deadlock with agents in multiagent system,an algorithm of multiagent coordination and cooperation was proposed. Taking agent in multiagent system as a player,the pursuit problem Markov model was built. The solution was introduced to get the optimal Nash equilibrium by multiagent reinforcement learning. The method of probability and statistics and Bayes formula was used to estimate the policy knowledge of other players. Relative mean deviation method was used to evaluate the confidence degree in order to increase the convergence speed. The simulation results on pursuit problem showed the feasibility and validity of the given algorithm.展开更多
Feeding experiments using three strains ofentomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosea were conducted with newly moulted 3rd-5th instar Ocinara varians Walker larvae in the...Feeding experiments using three strains ofentomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosea were conducted with newly moulted 3rd-5th instar Ocinara varians Walker larvae in the laboratory. The mortality of larvae immersed individually in spore suspension (1 × 10^7 spores/mL) of all the strains was 〉 80% except 5th instar larvae treated with M. anisopliae which transformed into pupae, but did not result in adult emergence. The growth (total body mass), consumption, relative consumption rate and relative growth rate, were reduced at all three larval stages, while developmental time was extended in infected larvae with concurrent significant increase in approximate digestibility in infected larvae. Conversion of digested food (ECD) and ingested food (ECI) values declined in infected larvae as compared to the healthy larvae (control). The 5th instar larvae treated with M. anisopliae showed higher ECD and ECI values than control. Based on mortality and growth inhibition it can be suggested that all the studied fungal strains have a high potential for biocontrol and could be developed into biocontrol agents against O. varians.展开更多
Hypersonic vehicles subjected to strong aerodynamic forces and serious aerodynamic heating require more stringent design for an infrared window. In this paper, a finite element analysis is used to present the distribu...Hypersonic vehicles subjected to strong aerodynamic forces and serious aerodynamic heating require more stringent design for an infrared window. In this paper, a finite element analysis is used to present the distributions of thermal and stress fields in the infrared window for hypersonic vehicles based on flowfield studies. A theoretical guidance is provided to evaluate the influence of aerodynamic heating and forces on infrared window materials. The aerodynamic heat flux from Mach 3 to Mach 6 flight at an altitude of 15 km in a standard atmosphere is obtained through flowfield analysis. The thermal and stress responses are then investigated under constant heat transfer coefficient boundary conditions for different Mach numbers. The numerical results show that the maximum stress is higher than the material strength at Mach 6, which means a failure of the material may occur. The maximum stress and temperatures are lower than the material strength and melting point under other conditions, so the material is safe.展开更多
基金the financial support by the National Natural Science Foundation of China(Grant No.51706055).
文摘Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,the drag coefficient correlation based on artificial neural network was applied in the simulations of a bubbling fluidized bed filled with non-spherical particles.The simulation results were compared with the experimental data from the literature.Good agreement between the experimental data and the simulation results reveals that the modified drag model can accurately capture the interaction between the gas phase and solid phase.Then,several cases of different particles,including tetrahedron,cube,and sphere,together with the nylon beads used in the model validation,were employed in the simulations to study the effect of particle shape on the flow behaviors in the bubbling fluidized bed.Particle shape affects the hydrodynamics of non-spherical particles mainly on microscale.This work can be a basis and reference for the utilization of artificial neural network in the investigation of drag coefficient correlation in the dense gas-solid two-phase flow.Moreover,the proposed drag coefficient correlation provides one more option when investigating the hydrodynamics of non-spherical particles in the gas-solid fluidized bed.
基金financially supported by the National Natural Science Foundation of China(Grant No.51706055).
文摘Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization of non-spherical particles.Understanding mixing behaviors of binary mixtures in a fluidized bed has specific significance for the design and optimization of related industrial processes.In this study,the computational fluid dynamic-discrete element method with the consideration of rolling friction was applied to evaluate the mixing behaviors of binary mixtures comprising spherocylindrical particles and spherical particles in a fluidized bed.The simulation results indicate that the differences between rotational particle velocities were higher than those of translational particle velocities for spherical and non-spherical particles when well mixed.Moreover,as the volume fraction of the spherocylindrical particles increases,translational and rotational granular temperatures gradually increase.In addition,the addition of the spherical particles makes the spherocylindrical particles preferably distributed in a vertical orientation.
基金Sponsored by the Fundamental Research Funds for the Central Universities of China (Grant No. DL12BB11)Program for New Century Excellent Talentsin University (Grant No. NCET-10-0279)Heilongjiang Postdoctoral Grant( Grant No. LRB11-334)
文摘To solve the problem of conflict and deadlock with agents in multiagent system,an algorithm of multiagent coordination and cooperation was proposed. Taking agent in multiagent system as a player,the pursuit problem Markov model was built. The solution was introduced to get the optimal Nash equilibrium by multiagent reinforcement learning. The method of probability and statistics and Bayes formula was used to estimate the policy knowledge of other players. Relative mean deviation method was used to evaluate the confidence degree in order to increase the convergence speed. The simulation results on pursuit problem showed the feasibility and validity of the given algorithm.
文摘Feeding experiments using three strains ofentomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosea were conducted with newly moulted 3rd-5th instar Ocinara varians Walker larvae in the laboratory. The mortality of larvae immersed individually in spore suspension (1 × 10^7 spores/mL) of all the strains was 〉 80% except 5th instar larvae treated with M. anisopliae which transformed into pupae, but did not result in adult emergence. The growth (total body mass), consumption, relative consumption rate and relative growth rate, were reduced at all three larval stages, while developmental time was extended in infected larvae with concurrent significant increase in approximate digestibility in infected larvae. Conversion of digested food (ECD) and ingested food (ECI) values declined in infected larvae as compared to the healthy larvae (control). The 5th instar larvae treated with M. anisopliae showed higher ECD and ECI values than control. Based on mortality and growth inhibition it can be suggested that all the studied fungal strains have a high potential for biocontrol and could be developed into biocontrol agents against O. varians.
基金Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51121004), and the Fundamental Research Funds for the Central Universities (No. HIT.BRETIV.201315), China
文摘Hypersonic vehicles subjected to strong aerodynamic forces and serious aerodynamic heating require more stringent design for an infrared window. In this paper, a finite element analysis is used to present the distributions of thermal and stress fields in the infrared window for hypersonic vehicles based on flowfield studies. A theoretical guidance is provided to evaluate the influence of aerodynamic heating and forces on infrared window materials. The aerodynamic heat flux from Mach 3 to Mach 6 flight at an altitude of 15 km in a standard atmosphere is obtained through flowfield analysis. The thermal and stress responses are then investigated under constant heat transfer coefficient boundary conditions for different Mach numbers. The numerical results show that the maximum stress is higher than the material strength at Mach 6, which means a failure of the material may occur. The maximum stress and temperatures are lower than the material strength and melting point under other conditions, so the material is safe.