Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mec...Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mechanical properties of spray-formed Al-Cu-Mg alloys during large-strain rolling at 420℃.Results show that during hot rolling,the proportion of high-angle grain boundaries(HAGBs)and the degree of dynamic recrystallization(DRX)initially increase and then decrease,whereas the average grain size and dislocation density show the opposite trend with the increase of the strain rate.In addition,the number of S′phases in the matrix decreases,and the grain boundary precipitates(GBPs)become coarser and more discontinuous as the strain rate increases.When the strain rate increases from 0.1 to 9.1 s^(-1),the tensile strength of the alloy decreases from 492.45 to 427.63 MPa,whereas the elongation initially increases from 12.1%to 21.8%and then decreases to 17.7%.展开更多
It is known that salt ions are abundant in the natural environment where natural gas hydrates are located;thus,it is essential to investigate the self-preservation effect of salt ions on methane hydrates.The dissociat...It is known that salt ions are abundant in the natural environment where natural gas hydrates are located;thus,it is essential to investigate the self-preservation effect of salt ions on methane hydrates.The dissociation behaviors of gas hydrates formed from various NaCl concentration solutions in a quartz sand system at 268.15 K were investigated to reveal the microscopic mechanism of the self-preservation effect under different salt concentrations.Results showed that as the salt concentration rises,the initial rate of hydrate decomposition quickens.Methane hydrate hardly shows self-preservation ability in the 3.35%(mass)NaCl and seawater systems at 268.15 K.Combined the morphology of hydrate observed by the confocal microscope with results obtained from in situ Raman spectroscopy,it was found that during the initial decomposition stage of gas hydrate below the ice point,gas hydrate firstly converts into liquid water and gas molecules,then turns from water to solid ice rather than directly transforming into solid ice and gas molecules.The presence of salt ions interferes with the ability of liquid water to condense into solid ice.The results of this study provide an important guide for the mechanism and application of the self-preservation effect on the storage and transport of gas and the exploitation of natural gas hydrates.展开更多
基金financially supported by the Major Special Projects in Anhui Province,China(No.202003c08020005)the Key Projects in Hunan Province,China(No.2020GK2045)。
文摘Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mechanical properties of spray-formed Al-Cu-Mg alloys during large-strain rolling at 420℃.Results show that during hot rolling,the proportion of high-angle grain boundaries(HAGBs)and the degree of dynamic recrystallization(DRX)initially increase and then decrease,whereas the average grain size and dislocation density show the opposite trend with the increase of the strain rate.In addition,the number of S′phases in the matrix decreases,and the grain boundary precipitates(GBPs)become coarser and more discontinuous as the strain rate increases.When the strain rate increases from 0.1 to 9.1 s^(-1),the tensile strength of the alloy decreases from 492.45 to 427.63 MPa,whereas the elongation initially increases from 12.1%to 21.8%and then decreases to 17.7%.
基金financial support received from the Basic Research Program of Qinghai Province(2023-ZJ-703)the National Natural Science Foundation of China(22178379,42206223)the National Key Research and Development Programof China(2021YFC2800902)is gratefully acknowledged.
文摘It is known that salt ions are abundant in the natural environment where natural gas hydrates are located;thus,it is essential to investigate the self-preservation effect of salt ions on methane hydrates.The dissociation behaviors of gas hydrates formed from various NaCl concentration solutions in a quartz sand system at 268.15 K were investigated to reveal the microscopic mechanism of the self-preservation effect under different salt concentrations.Results showed that as the salt concentration rises,the initial rate of hydrate decomposition quickens.Methane hydrate hardly shows self-preservation ability in the 3.35%(mass)NaCl and seawater systems at 268.15 K.Combined the morphology of hydrate observed by the confocal microscope with results obtained from in situ Raman spectroscopy,it was found that during the initial decomposition stage of gas hydrate below the ice point,gas hydrate firstly converts into liquid water and gas molecules,then turns from water to solid ice rather than directly transforming into solid ice and gas molecules.The presence of salt ions interferes with the ability of liquid water to condense into solid ice.The results of this study provide an important guide for the mechanism and application of the self-preservation effect on the storage and transport of gas and the exploitation of natural gas hydrates.