Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromag...Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromagnetic ground states with a high Curie temperature that is far above room temperature and exhibit obvious spin-Seebeck effect. Moreover, thermal colossal magnetoresistance up to 1020% can be achieved by the external magnetic field modulation. The underlying mechanism is analyzed by spin-resolved transmission spectra, current spectra and band structures.展开更多
Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fe- phthMocyanine dimers with two armchair single-wailed carbon nanotube electrodes is investigated. The results sh...Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fe- phthMocyanine dimers with two armchair single-wailed carbon nanotube electrodes is investigated. The results show that the system can present high-performance spin filtering, magnetoresistance, and low-bias spin negative differential resistance effects by tuning the external magnetic field. These results show that the Fe-phthalocyanine dimer has the potential to design future molecular spintronic devices.展开更多
基金Supported by the Natural Science Foundation of Shandong Province under Grant No ZR2016AM11
文摘Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromagnetic ground states with a high Curie temperature that is far above room temperature and exhibit obvious spin-Seebeck effect. Moreover, thermal colossal magnetoresistance up to 1020% can be achieved by the external magnetic field modulation. The underlying mechanism is analyzed by spin-resolved transmission spectra, current spectra and band structures.
基金Supported by the National Natural Science Foundation of China under Grant No 11104115the Natural Science Foundation of Shandong Province under Grant No ZR2016AM11
文摘Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fe- phthMocyanine dimers with two armchair single-wailed carbon nanotube electrodes is investigated. The results show that the system can present high-performance spin filtering, magnetoresistance, and low-bias spin negative differential resistance effects by tuning the external magnetic field. These results show that the Fe-phthalocyanine dimer has the potential to design future molecular spintronic devices.