Tailoring the alloy composition,which induces the hard secondary phase to increase hardness and strength to improve the wear features,is a feasible approach for developing wear-resistant metal materials.Here,a group o...Tailoring the alloy composition,which induces the hard secondary phase to increase hardness and strength to improve the wear features,is a feasible approach for developing wear-resistant metal materials.Here,a group of(AlCoCrFeNi)_(100–x)Sc_(x)(x=0–2.0,at%)high-entropy alloys(HEAs)are designed and the phase compositions and wear behaviors are explored.Sc-doped HEA series contain the primary body-centered cubic(BCC)and eutectic phases,in which the eutectic phase is composed of the alternately grown BCC and Laves phases.Sc addition promotes the diffusion of Ni atoms from BCC phase to form the Sc-rich Laves phase at the grain boundaries.Vickers hardness increases due to solid solution strengthening and second phase strengthening.And the second phase strengthening plays a more significant role relative to solid solution strengthening.Laves phase and the oxides caused by wear heating prevent the direct contact between friction pair and HEAs,thus inducing a decreased wear rate from 6.82×10^(−5) to 3.47×10^(−5)m^(3)·N^(−1)·m^(−1).Moreover,the wear mechanism changes from adhesive wear,abrasive wear and oxidative wear to abrasive wear and oxidative wear.展开更多
Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute ...Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute to improving the wear properties of HE As.Here,we prepare a series of(AlCoCrFeNi)_(100-x)Hf_(x)(x=0,2,4and 6;at%) HEAs and concern their phase compositions,micro structures and wear properties.Hf leads to the formation of(Ni,Co)_(2)Hf-type Laves phase and tailors the microstructure from a body-centered cubic(BCC) singlephase structure to a hypoeutectic structure.An increased hardness from~HV 512.3 to~HV 734.1 is due to solid-solution strengthening,grain refinement strengthening and precipitated phase strengthening.And a few oxides(Al_(2)O_(3)+Cr_(2)O_(3)) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from6.71×10^(-5) to 0.97×10^(-5) m^(3)·N^(-1)·m^(-1).In addition,Hf addition changes the wear mechanism from abrasive wear,mild oxidative wear and adhesive wear to oxidative wear and adhesive wear.展开更多
Mesoporous mesocrystals are highly desired in catalysis,energy storage,medical and many other applications,but most of synthesis strategies involve the usage of costly chemicals and complicated synthesis routes,which ...Mesoporous mesocrystals are highly desired in catalysis,energy storage,medical and many other applications,but most of synthesis strategies involve the usage of costly chemicals and complicated synthesis routes,which impede the commercialization of such materials.During the sintering of dense ceramics,coarsening is an undesirable phenomenon which causes the growth of the grains as well as the pores hence hinders the densification,however,coarsening is desired in the sintering of porous ceramics to expand the pore sizes while retaining the total pore volume.Here we report a chemi-thermal process,during which nanocrystallite aggregates were synthesized by hydrothermal process and then converted to the product by sintering.Through this strategy,we synthesized mesoporous self-supported mesocrystals of yttria-stabilized zirconia with tunable pore size and the process was then scaled-up to industrial production.The thermal conductivity measurement shows that the mesoporous powder is a good thermal isolator.The monolith pellets can be obtained by SPS sintering under high pressure and the mesoporosity is retained in the monolith pellets.This work features facile and scalable process as well as low cost raw chemicals making it highly desirable in industrial applications.展开更多
There is increasing interest in the development of bone repair materials for biomedical applications.Magnesium(Mg)-based alloys have a natural ability to biodegrade because they corrode in aqueous media;they are thus ...There is increasing interest in the development of bone repair materials for biomedical applications.Magnesium(Mg)-based alloys have a natural ability to biodegrade because they corrode in aqueous media;they are thus promising materials for orthopaedic device applications in that the need for a secondary surgical operation to remove the implant can be eliminated.Notably,Mg has superior biocompatibility because Mg is found in the human body in abundance.Moreover,Mg alloys have a low elastic modulus,close to that of natural bone,which limits stress shielding.However,there are still some challenges for Mg-based fracture fixation.The degradation of Mg alloys in biological fluids can be too rapid,resulting in a loss of mechanical integrity before complete healing of the bone fracture.In order to achieve an appropriate combination of bio-corrosion and mechanical performance,the microstructure needs to be tailored properly by appropriate alloy design,as well as the use of strengthening processes and manufacturing techniques.This review covers the evolution,current strategies and future perspectives of Mg-based orthopaedic implants.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.51825401)the Postdoctoral Foundation of Heilongjiang Province(No.LBH-Z19154)+1 种基金the National Natural Science Foundation of Heilongjiang Province(No.LH2020E031)the Interdisciplinary Research Foundation of HIT.
文摘Tailoring the alloy composition,which induces the hard secondary phase to increase hardness and strength to improve the wear features,is a feasible approach for developing wear-resistant metal materials.Here,a group of(AlCoCrFeNi)_(100–x)Sc_(x)(x=0–2.0,at%)high-entropy alloys(HEAs)are designed and the phase compositions and wear behaviors are explored.Sc-doped HEA series contain the primary body-centered cubic(BCC)and eutectic phases,in which the eutectic phase is composed of the alternately grown BCC and Laves phases.Sc addition promotes the diffusion of Ni atoms from BCC phase to form the Sc-rich Laves phase at the grain boundaries.Vickers hardness increases due to solid solution strengthening and second phase strengthening.And the second phase strengthening plays a more significant role relative to solid solution strengthening.Laves phase and the oxides caused by wear heating prevent the direct contact between friction pair and HEAs,thus inducing a decreased wear rate from 6.82×10^(−5) to 3.47×10^(−5)m^(3)·N^(−1)·m^(−1).Moreover,the wear mechanism changes from adhesive wear,abrasive wear and oxidative wear to abrasive wear and oxidative wear.
基金financially supported by the National Natural Science Foundation of China (No.51825401)the Postdoctoral Foundation of Heilongjiang Province (No.LBHZ19154)+1 种基金the National Natural Science Foundation of Heilongjiang Province (No.LH2020E031)the Interdisciplinary Research Foundation of HIT。
文摘Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute to improving the wear properties of HE As.Here,we prepare a series of(AlCoCrFeNi)_(100-x)Hf_(x)(x=0,2,4and 6;at%) HEAs and concern their phase compositions,micro structures and wear properties.Hf leads to the formation of(Ni,Co)_(2)Hf-type Laves phase and tailors the microstructure from a body-centered cubic(BCC) singlephase structure to a hypoeutectic structure.An increased hardness from~HV 512.3 to~HV 734.1 is due to solid-solution strengthening,grain refinement strengthening and precipitated phase strengthening.And a few oxides(Al_(2)O_(3)+Cr_(2)O_(3)) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from6.71×10^(-5) to 0.97×10^(-5) m^(3)·N^(-1)·m^(-1).In addition,Hf addition changes the wear mechanism from abrasive wear,mild oxidative wear and adhesive wear to oxidative wear and adhesive wear.
文摘Mesoporous mesocrystals are highly desired in catalysis,energy storage,medical and many other applications,but most of synthesis strategies involve the usage of costly chemicals and complicated synthesis routes,which impede the commercialization of such materials.During the sintering of dense ceramics,coarsening is an undesirable phenomenon which causes the growth of the grains as well as the pores hence hinders the densification,however,coarsening is desired in the sintering of porous ceramics to expand the pore sizes while retaining the total pore volume.Here we report a chemi-thermal process,during which nanocrystallite aggregates were synthesized by hydrothermal process and then converted to the product by sintering.Through this strategy,we synthesized mesoporous self-supported mesocrystals of yttria-stabilized zirconia with tunable pore size and the process was then scaled-up to industrial production.The thermal conductivity measurement shows that the mesoporous powder is a good thermal isolator.The monolith pellets can be obtained by SPS sintering under high pressure and the mesoporosity is retained in the monolith pellets.This work features facile and scalable process as well as low cost raw chemicals making it highly desirable in industrial applications.
文摘There is increasing interest in the development of bone repair materials for biomedical applications.Magnesium(Mg)-based alloys have a natural ability to biodegrade because they corrode in aqueous media;they are thus promising materials for orthopaedic device applications in that the need for a secondary surgical operation to remove the implant can be eliminated.Notably,Mg has superior biocompatibility because Mg is found in the human body in abundance.Moreover,Mg alloys have a low elastic modulus,close to that of natural bone,which limits stress shielding.However,there are still some challenges for Mg-based fracture fixation.The degradation of Mg alloys in biological fluids can be too rapid,resulting in a loss of mechanical integrity before complete healing of the bone fracture.In order to achieve an appropriate combination of bio-corrosion and mechanical performance,the microstructure needs to be tailored properly by appropriate alloy design,as well as the use of strengthening processes and manufacturing techniques.This review covers the evolution,current strategies and future perspectives of Mg-based orthopaedic implants.