期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The protocadherin alpha cluster is required for axon extension and myelination in the developing central nervous system 被引量:2
1
作者 Wen-cheng Lu yu-xiao zhou +3 位作者 Ping Qiao Jin Zheng Qiang Wu Qiang Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期427-433,共7页
In adult mammals, axon regeneration after central nervous system injury is very poor, resulting in persistent functional loss. Enhancing the ability of axonal outgrowth may be a potential treatment strategy because ma... In adult mammals, axon regeneration after central nervous system injury is very poor, resulting in persistent functional loss. Enhancing the ability of axonal outgrowth may be a potential treatment strategy because mature neurons of the adult central nervous system may retain the intrinsic ability to regrow axons after injury. The protocadherin (Pcdh) clusters are thought to function in neuronal morphogenesis and in the assembly of neural circuitry in the brain. We cultured primary hippocampal neurons from E17.5 Pcdhα deletion (del-α) mouse embryos. After culture for 1 day, axon length was obviously shorter in del-α neurons compared with wild-type neurons. RNA sequencing of hippocampal E17.5 RNA showed that expression levels of BDNF, Fmod, Nrp2, OGN, and Sema3d, which are associated with axon extension, were significantly down-regulated in the absence of the Pcdhα gene cluster. Using transmission electron microscopy, the ratio of myelinated nerve fibers in the axons of del-α hippocampal neurons was significantly decreased; myelin sheaths of P21 Pcdhα-del mice showed lamellar disorder, discrete appearance, and vacuoles. These results indicate that the Pcdhα cluster can promote the growth and myelination of axons in the neurodevelopmental stage. 展开更多
关键词 nerve regeneration spinal cord injury AXONS protocadherin α cluster hippocampal neurons RNA sequencing real-time quantitative polymerase chain reaction transmission electron microscopy neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部