We report the superconductivity of a new quaternary compound ThMo_(2)Si_(2)C, synthesized with the arc-melting technique. The compound crystallizes in a tetragonal CeCr_(2)Si_(2)C-type structure with cell parameters o...We report the superconductivity of a new quaternary compound ThMo_(2)Si_(2)C, synthesized with the arc-melting technique. The compound crystallizes in a tetragonal CeCr_(2)Si_(2)C-type structure with cell parameters of a = 4.2296A and c = 5.3571 A. An interlayer Si–Si covalent bonding is suggested by the atomic distance. The electrical resistivity and magnetic susceptibility measurements indicate a Pauli-paramagnetic metal with dominant electron-electron scattering in the normal-state. Bulk superconductivity at 2.2 K is demonstrated with a dimensionless specific-heat jump of △C/γnT = 0.98. The superconducting parameters of the critical magnetic fields, coherence length, penetration depth, and superconducting energy gap are given.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303002)the Natural Science Foundation of Shandong Province (Grant Nos. ZR2019MA036, and ZR2016AQ08)。
文摘We report the superconductivity of a new quaternary compound ThMo_(2)Si_(2)C, synthesized with the arc-melting technique. The compound crystallizes in a tetragonal CeCr_(2)Si_(2)C-type structure with cell parameters of a = 4.2296A and c = 5.3571 A. An interlayer Si–Si covalent bonding is suggested by the atomic distance. The electrical resistivity and magnetic susceptibility measurements indicate a Pauli-paramagnetic metal with dominant electron-electron scattering in the normal-state. Bulk superconductivity at 2.2 K is demonstrated with a dimensionless specific-heat jump of △C/γnT = 0.98. The superconducting parameters of the critical magnetic fields, coherence length, penetration depth, and superconducting energy gap are given.