In this paper, we first consider the least-squares solution of the matrix inverse problem as follows: Find a hermitian anti-reflexive matrix corresponding to a given generalized reflection matrix J such that for give...In this paper, we first consider the least-squares solution of the matrix inverse problem as follows: Find a hermitian anti-reflexive matrix corresponding to a given generalized reflection matrix J such that for given matrices X, B we have minA ||AX - B||. The existence theorems are obtained, and a general representation of such a matrix is presented. We denote the set of such matrices by SE. Then the matrix nearness problem for the matrix inverse problem is discussed. That is: Given an arbitrary A^*, find a matrix A E SE which is nearest to A^* in Frobenius norm. We show that the nearest matrix is unique and provide an expression for this nearest matrix.展开更多
基金supported by China Postdoctoral Science Foundation (Grant No. 2004035645)
文摘In this paper, we first consider the least-squares solution of the matrix inverse problem as follows: Find a hermitian anti-reflexive matrix corresponding to a given generalized reflection matrix J such that for given matrices X, B we have minA ||AX - B||. The existence theorems are obtained, and a general representation of such a matrix is presented. We denote the set of such matrices by SE. Then the matrix nearness problem for the matrix inverse problem is discussed. That is: Given an arbitrary A^*, find a matrix A E SE which is nearest to A^* in Frobenius norm. We show that the nearest matrix is unique and provide an expression for this nearest matrix.