Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing was investigated by optical microscopy, transmission electron microscopy, and X-ray diffraction. The results showed th...Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing was investigated by optical microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that crystallographic slip was the predominant deformation mechanism in the early stage of deformation. Deformation twins started to form when the rolling reduction was larger than 38.9%; both the dislocation density and the number of twins increased with increasing rolling reduction. The initial texture of the Zr 702 plate consisted of the basal fiber component. During cold rolling the strength of the basal fiber first decreased and then increased with increasing rolling reduction. The cold-rolled sheets were fully recrystallized after being annealed at 550℃. The recrystallization temperature and the size of recrystallized grains decreased with increasing rolling reduction. A larger rolling reduction resulted in a higher grain growth rate when the annealing temperature increased from 550℃ to 700℃. The recrystallization texture was characterized by a major basal fiber and a minor {0113}〈2110〉 component. The strength of the recrystallization texture increased with increasing rolling reduction.展开更多
The effect of strain rate and deformation temperature on theα→βphase transformation in 47Zr-45Ti-5Al-3V alloy with an initial widmanstattenαstructure was investigated.At the deformation temperature of 550°C,t...The effect of strain rate and deformation temperature on theα→βphase transformation in 47Zr-45Ti-5Al-3V alloy with an initial widmanstattenαstructure was investigated.At the deformation temperature of 550°C,the volume fraction ofαphase decreased with increasing strain rate.At 600 and 650°C,the volume fraction ofαphase firstly increased to a maximum value with increasing strain rate from 1×10-3 to 1×10-2 s-1,and then decreased.At 700°C,the microstructure consisted of singleβphase.At a given strain rate,the volume fraction ofαphase decreased with increasing deformation temperature.With decreasing strain rate and increasing deformation temperature,the volume fraction and size of globularαphase increased.At 650°C and 1×10-3 s-1,the lamellarαphase was fully globularized.The variation in the volume fraction and morphology ofαphase with strain rate and deformation temperature significantly affected the hardness of 47Zr-45Ti-5Al-3V alloy.展开更多
In this study, microstructure and texture evolution of TB8 titanium alloys during hot deformation were investigated by using electron back-scattered diffraction(EBSD) analysis. The results showed that dynamic recrysta...In this study, microstructure and texture evolution of TB8 titanium alloys during hot deformation were investigated by using electron back-scattered diffraction(EBSD) analysis. The results showed that dynamic recrystallization(DRX) behavior of TB8 titanium alloys was drastically sensitive to the strain. As the true strain raised from 0.2 to 0.8, the degree of DRX gradually increased. The nucleation mechanism of recrystallization was observed, including discontinuous dynamic recrystallization(DDRX) resulting from the bulging of original boundaries. Furthermore, continuous dynamic recrystallization(CDRX) occurred because of the transformation of low-angle grain boundaries(LAGBs) to high-angle grain boundaries(HAGBs) in the interior of the original deformed grains. The texture evolution of TB8 titanium alloy during hot deformation process was analyzed in detail, and five texture components were observed,including{001}h100 i,{011}h100 i,{112}h110 i,{111}h110 i, and {111}h112 i. As the true strain increased,deformation textures were gradually weakened due to an increase in the volume fraction of DRX grains. When the true strain was 0.8, the main texture components consisted of the recrystallization texture components of the{001}h100 i and {011}h100 i textures.展开更多
In this paper,the metastableβTB8 titanium alloy with nanocrystallineαphase is achieved by electric pulse treatment.The morphology evolution and variant selection of nanocrystallineαphase in metastableβTB8titanium ...In this paper,the metastableβTB8 titanium alloy with nanocrystallineαphase is achieved by electric pulse treatment.The morphology evolution and variant selection of nanocrystallineαphase in metastableβTB8titanium alloy were investigated by using scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscope(TEM)analysis.The results indicated that the morphologies of the nanocrystallineαphase were mainly triangular clusters and needle-like at the pressure of 0 MPa.With increasing pressure from 20 to 50 MPa,the volume fraction of needlelikeαphase decreased,and a large amount of V-shapedαphase formed in the interior ofβgrains.Based on the EBSD data,the parentβphase was reconstructed by MTEX software.In the interior of theβgrains,12 variants can form for the samples electric pulse treated at 0 and20 MPa,while only 3 and 6 variants can form for the samples electric pulse treated at 30 and 50 MPa.In the grain boundary of theβgrains,one or more grain boundaryαvariants can be generated for the samples electric pulse treated at different pressures as long as one of the neighborβgrains follows the Burgers orientation relationship.展开更多
H13-mod steel developed after optimizing the composition and heat treatment process exhibits good hardness and impact toughness and can be used as a shield machine hob.Based on the Avrami equation,the dynamic recrysta...H13-mod steel developed after optimizing the composition and heat treatment process exhibits good hardness and impact toughness and can be used as a shield machine hob.Based on the Avrami equation,the dynamic recrystallization(DRX)behaviour of H13-mod steel during hot compression was studied in the temperature of 900-1150°C and strain rate ranges of 0.01-10 s^-1.A DRX model and finite element software were used to study DRX behaviour of H13-mod steel.Significant DRX was found at both low and high strain rates.Electron backscatter diffraction and optical microscopy analyses found different DRX nucleation mechanisms at low and high strain rates under different deformations.At a low strain rate,the nucleation was dominated by the strain-induced grain boundary migration,whereas the subgrain coalescence mechanism was dominant at a high strain rate.Moreover,dynamic recovery occurred in both processes.In addition,it was easier to obtain small and uniform equiaxed grains at high strain rates than at low strain rates.展开更多
基金financially supported by the National Basic Research and Development Program of China (No. 2010CB731606)
文摘Microstructure and texture evolution in commercial-purity Zr 702 during cold rolling and annealing was investigated by optical microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that crystallographic slip was the predominant deformation mechanism in the early stage of deformation. Deformation twins started to form when the rolling reduction was larger than 38.9%; both the dislocation density and the number of twins increased with increasing rolling reduction. The initial texture of the Zr 702 plate consisted of the basal fiber component. During cold rolling the strength of the basal fiber first decreased and then increased with increasing rolling reduction. The cold-rolled sheets were fully recrystallized after being annealed at 550℃. The recrystallization temperature and the size of recrystallized grains decreased with increasing rolling reduction. A larger rolling reduction resulted in a higher grain growth rate when the annealing temperature increased from 550℃ to 700℃. The recrystallization texture was characterized by a major basal fiber and a minor {0113}〈2110〉 component. The strength of the recrystallization texture increased with increasing rolling reduction.
基金Project(201629) supported by the Scientific Research Foundation for Introduced Talent of Guizhou University,ChinaProjects(20164014,20165654) supported by the Hundred-level Innovative Talents Project of Guizhou Province,ChinaProject(20146013) supported by the Science and Technology of Guizhou Province,China
文摘The effect of strain rate and deformation temperature on theα→βphase transformation in 47Zr-45Ti-5Al-3V alloy with an initial widmanstattenαstructure was investigated.At the deformation temperature of 550°C,the volume fraction ofαphase decreased with increasing strain rate.At 600 and 650°C,the volume fraction ofαphase firstly increased to a maximum value with increasing strain rate from 1×10-3 to 1×10-2 s-1,and then decreased.At 700°C,the microstructure consisted of singleβphase.At a given strain rate,the volume fraction ofαphase decreased with increasing deformation temperature.With decreasing strain rate and increasing deformation temperature,the volume fraction and size of globularαphase increased.At 650°C and 1×10-3 s-1,the lamellarαphase was fully globularized.The variation in the volume fraction and morphology ofαphase with strain rate and deformation temperature significantly affected the hardness of 47Zr-45Ti-5Al-3V alloy.
基金This study was financially supported by the National Natural Science Foundation of China(No.51804087)the Science and Technology Cooperative Foundation of Guizhou province(Nos.[2017]7240 and[2017]5788)+1 种基金the Basic Research Program of Guizhou Province(No.[2019]1091)the Youth Science and Technology Talent Growth Project of Guizhou Education Bureau(No.[2018]107)。
文摘In this study, microstructure and texture evolution of TB8 titanium alloys during hot deformation were investigated by using electron back-scattered diffraction(EBSD) analysis. The results showed that dynamic recrystallization(DRX) behavior of TB8 titanium alloys was drastically sensitive to the strain. As the true strain raised from 0.2 to 0.8, the degree of DRX gradually increased. The nucleation mechanism of recrystallization was observed, including discontinuous dynamic recrystallization(DDRX) resulting from the bulging of original boundaries. Furthermore, continuous dynamic recrystallization(CDRX) occurred because of the transformation of low-angle grain boundaries(LAGBs) to high-angle grain boundaries(HAGBs) in the interior of the original deformed grains. The texture evolution of TB8 titanium alloy during hot deformation process was analyzed in detail, and five texture components were observed,including{001}h100 i,{011}h100 i,{112}h110 i,{111}h110 i, and {111}h112 i. As the true strain increased,deformation textures were gradually weakened due to an increase in the volume fraction of DRX grains. When the true strain was 0.8, the main texture components consisted of the recrystallization texture components of the{001}h100 i and {011}h100 i textures.
基金financially supported by the National Natural Science Foundation of China(Nos.51804087 and 52161010)the Science and Technology Programs of Guiyang(No.[2021]1-7)the Breeding Programs of Guizhou University(Nos.[2019]16 and[2020]21)。
文摘In this paper,the metastableβTB8 titanium alloy with nanocrystallineαphase is achieved by electric pulse treatment.The morphology evolution and variant selection of nanocrystallineαphase in metastableβTB8titanium alloy were investigated by using scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscope(TEM)analysis.The results indicated that the morphologies of the nanocrystallineαphase were mainly triangular clusters and needle-like at the pressure of 0 MPa.With increasing pressure from 20 to 50 MPa,the volume fraction of needlelikeαphase decreased,and a large amount of V-shapedαphase formed in the interior ofβgrains.Based on the EBSD data,the parentβphase was reconstructed by MTEX software.In the interior of theβgrains,12 variants can form for the samples electric pulse treated at 0 and20 MPa,while only 3 and 6 variants can form for the samples electric pulse treated at 30 and 50 MPa.In the grain boundary of theβgrains,one or more grain boundaryαvariants can be generated for the samples electric pulse treated at different pressures as long as one of the neighborβgrains follows the Burgers orientation relationship.
基金This work was supported by National Natural Science Foundation of China(Grant No.51571066)Guizhou Science and Technology Project(Grant Nos.20165654 and 20162326).
文摘H13-mod steel developed after optimizing the composition and heat treatment process exhibits good hardness and impact toughness and can be used as a shield machine hob.Based on the Avrami equation,the dynamic recrystallization(DRX)behaviour of H13-mod steel during hot compression was studied in the temperature of 900-1150°C and strain rate ranges of 0.01-10 s^-1.A DRX model and finite element software were used to study DRX behaviour of H13-mod steel.Significant DRX was found at both low and high strain rates.Electron backscatter diffraction and optical microscopy analyses found different DRX nucleation mechanisms at low and high strain rates under different deformations.At a low strain rate,the nucleation was dominated by the strain-induced grain boundary migration,whereas the subgrain coalescence mechanism was dominant at a high strain rate.Moreover,dynamic recovery occurred in both processes.In addition,it was easier to obtain small and uniform equiaxed grains at high strain rates than at low strain rates.