A 50 mA CW deuteron RFQ is being built for a joint 973 project between Peking University and the Institute of Modern Physics. This RFQ adopts a high-frequency window-type structure. To study its RF properties and to v...A 50 mA CW deuteron RFQ is being built for a joint 973 project between Peking University and the Institute of Modern Physics. This RFQ adopts a high-frequency window-type structure. To study its RF properties and to validate the reliability of an electromagnetic simulation, two full-length aluminum models with tuners were built in succession. RF measurements were obtained from the test bench and compared to the simulations, including frequencies, quality factors, and electric fields of different modes and the field in aperture. Through field tuning, the maximal field unflatness for a single quadrant and the average asymmetry of four quadrants were reduced from 8.7% and ± 3.6% to 5.8% and ± 1.7%, respectively.Moreover, a tuning method of adjusting the gap distance between the endplates and the vanes was also studied in this paper.展开更多
基金supported by the National Basic Research Program of China(No.2014CB845503)
文摘A 50 mA CW deuteron RFQ is being built for a joint 973 project between Peking University and the Institute of Modern Physics. This RFQ adopts a high-frequency window-type structure. To study its RF properties and to validate the reliability of an electromagnetic simulation, two full-length aluminum models with tuners were built in succession. RF measurements were obtained from the test bench and compared to the simulations, including frequencies, quality factors, and electric fields of different modes and the field in aperture. Through field tuning, the maximal field unflatness for a single quadrant and the average asymmetry of four quadrants were reduced from 8.7% and ± 3.6% to 5.8% and ± 1.7%, respectively.Moreover, a tuning method of adjusting the gap distance between the endplates and the vanes was also studied in this paper.